
        

 

  

Roberto Gerson de Albuquerque Azevedo 

Supporting Multimedia Applications in Stereoscopic and 

Depth-based 3D Video Systems 

 

 

 

 

 

TESE DE DOUTORADO 

Thesis presented to the Programa de Pós Graduação 
em Informática of the Departamento de Informática, 
Centro Técnico Científico, PUC-Rio as partial 
fulfillment of the requirements for the degree of 
Doutor. 

 

 

 
Advisor: Prof. Luiz Fernando Gomes Soares 

in memoriam 
 

 

 

 

 

 

 

 

 

 

Rio de Janeiro  
December 2015 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

 

Roberto Gerson de Albuquerque Azevedo 
 

Supporting Multimedia Applications in 
Stereoscopic and Depth-based 3D Video 

Systems 
 

Thesis presented to the Programa de Pós 
Graduação em Informática of the Departamento de 
Informática, Centro Técnico Científico, PUC-Rio as 
partial fulfillment of the requirements for the degree 
of Doutor. 

 
in memoriam 

Prof. Luiz Fernando Gomes Soares 
Orientador 

Departamento de Informática – PUC-Rio 
 
 

Prof. Alberto Barbosa Raposo 
Departamento de Informática – PUC-Rio 

 
 

Prof. Sérgio Colcher 
Departamento de Informática – PUC-Rio 

 
 

Profª. Simone Diniz Junqueira Barbosa  
Departamento de Informática – PUC-Rio 

 
 

Prof. Guido Lemos de Souza Filho 
UFPB 

 
 

Prof. Rudinei Goularte 
USP 

 
 

Prof. José Eugenio Leal 
Coordenador Setorial do Centro 

Técnico Científico – PUC-Rio 
 

Rio de Janeiro, December 1st, 2015  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

 All rights reserved. 

 

 Roberto Gerson de Albuquerque Azevedo 

Roberto Gerson de Albuquerque Azevedo is an associate 

researcher at the TeleMídia Lab. in PUC-Rio. His research 

interests include the areas of three-dimensional multimedia 

and hypermedia authoring and systems. Roberto received his 

B.Sc. degree in Computer Science from the Federal 

University of Maranhão and his M.Sc. degree in Informatics 

from the Department of Informatics at PUC-Rio. 

 

 

 Bibliographic data 

 
Azevedo, Roberto Gerson de Albuquerque 

 
Supporting Multimedia Applications in Stereoscopic and 

Depth-based 3D Video Systems / Roberto Gerson de 
Albuquerque Azevedo ; advisor: Luiz Fernando Gomes 
Soares. — Rio de Janeiro: PUC, Departamento de 
Informática, 2015. 

 
v. 149 f. : il. ; 30 cm 
 
Tese (Doutorado em Informática) – Pontifícia 

Universidade Católica do Rio de Janeiro, Rio de Janeiro, 
2015. 

 
Inclui referências bibliográficas. 
 
1. Informática - Teses. 2. Aplicações Multimídia. 3. 

Documentos Multimídia. 4. Vídeos 3D. 5. Estereoscopia. 6. 
Vídeo com profundidade. I. Soares, Luiz Fernando Gomes. 
II. Pontifícia Universidade Católica do Rio de Janeiro. 
Departamento de Informática. III. Título. 

CDD: 004  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents, Tarcísio and 

Carminda, and my advisor, 

Luiz Fernando. 

  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

Acknowledgments 

 

 

 

 

 

First of all, I am very grateful to my advisor, Luiz Fernando Gomes Soares, for 

his wisdom, encouragement, friendship, and advice. He helped to shape me in so 

many ways, not only as a researcher but also as a human being. 

Also, I would like to give a special thank you to the members of my reading 

committee, Alberto Raposo, Sérgio Colcher, Simone Barbosa, Guido Lemos, and 

Rudinei Goulart, who have found time to read this work carefully and proposed 

much valuable and interesting input.  

Over the last years, I have been part of the TeleMídia family. I warmly thank all 

my colleagues from the lab., who have helped to build a very fruitful environment 

for work, friendship, and all sorts of discussions. 

I also gratefully thank my entire family who has been very comprehensive about 

my absence during the development of this work. Especially, I thank my wife, 

Vanessa Leite, who have always supported me with all my decisions, encouraged 

me to pursue my dreams, and helped me with all sort of emotional issues. 

Finally, I thank CAPES and FAPERJ for their financial support. 

  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

Abstract 

Azevedo, Roberto Gerson de Albuquerque. Soares, Luiz Fernando 

Gomes (Advisor). Supporting Multimedia Applications in Stereoscopic 

and Depth-based 3D Video Systems. Rio de Janeiro, 2015. 149p. PhD. 

Thesis - Departamento de Informática, Pontifícia Universidade Católica do 

Rio de Janeiro. 

Two-dimensional video technologies have evolved quickly in the last few 

years. Even so, they do not achieve a realistic and immersive view of the world since 

they do not offer important depth cues to the human vision system. 

Three-dimensional video (3DV) technologies try to fulfill this gap through video 

representations that enable 3D displays to provide those additional depth cues. 

Although CSV (Conventional Stereoscopic Video) has been the most widely-used 

3DV representation, other 3DV representations have emerged during the last years. 

Examples of those representations include MVV (Multi-view video), 2D+Z (2D 

plus depth), MVD (Multi-view plus depth), and LDV (Layered-depth Video). 

Although end-to-end 3DV delivery chains based on those 3DV formats have been 

studied, the integration of interactive multimedia applications into those 3DV 

delivery chains has not yet been explored enough. The integration of multimedia 

applications with 3D media using those new representations has the potential of 

allowing new rich content, user experiences and business models. In this thesis, two 

approaches for the integration of multimedia applications into 3DV end-to-end 

delivery chains are proposed. First, a backward-compatible approach for integrating 

CSV-based media into 2D-only multimedia languages is discussed. In this proposal, 

it is possible to add depth information to 2D-only media objects. The proposal 

consists of extensions to multimedia languages and a process for converting the 

original multimedia application into its stereoscopic version. It does not require any 

change on the language player and is ready-to-run in current CSV-based 3DV 

delivery chains and digital receiver’s hardware. Second, extensions to multimedia 

languages based on layered-depth media are proposed and a software architecture 

for the graphics composition of multimedia applications using those extensions is 

presented. As an example, both proposals are implemented and integrated into an 

end-to-end 3DV delivery chain based on the Brazilian Digital TV System. 

 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

Keywords 

Multimedia Applications; Multimedia Documents; 3D Video; Stereoscopy; 

Video-plus-depth; Layered-depth-video; 

  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

Resumo 

Azevedo, Roberto Gerson de Albuquerque. Soares, Luiz Fernando 

Gomes (Orientador). Suporte a Aplicações Multimídia em Sistemas de 

Vídeo 3D Estereoscópicos e Baseados em Profundidade. Rio de Janeiro, 

2015. 149p. Tese de Doutorado - Departamento de Informática, Pontifícia 

Universidade Católica do Rio de Janeiro. 

Tecnologias de vídeos bidimensionais (2D) têm evoluído rapidamente nos 

últimos anos. Apesar disso, elas não permitem uma visão realista e imersiva do 

mundo, pois não oferecem importantes dicas de profundidade para o sistema visual 

humano. Tecnologias de vídeo tridimensionais (3D) têm como objetivo preencher 

essa lacuna, provendo representações que permitem a reprodução de informações de 

profundidade em displays 3D. Embora a representação baseada em vídeos 

estereoscópicos ainda seja a mais utilizada até o momento, novas representações de 

vídeo 3D têm emergido, tais como MVV (Multi-view video), 2D+Z (2D plus depth), 

MVD (Multi-view plus depth) e LDV (Layered-depth video). A integração de 

aplicações multimídia com mídias 3D tem o potencial de permitir novos conteúdos 

interativos, novas experiências com o usuário e novos modelos de negócio. Nesta 

tese, duas abordagens para a integração de aplicações multimídia em cadeias de 

transmissão de vídeo 3D fim-a-fim são propostas. Primeiro, uma abordagem que é 

compatível com cadeias de transmissão de vídeo 3D baseado em vídeos 

estereoscópicos é discutida. A proposta consiste em extensões para linguagens 

multimídia 2D e um processo de conversão de aplicações multimídia 2D para sua 

versão estereoscópica. Essa proposta não requer nenhuma alteração no exibidor de 

linguagens multimídia 2D para a apresentação de mídias estereoscópicas. Em uma 

segunda abordagem, extensões adicionais a linguagens multimídia também são 

propostas visando a integração de aplicações multimídia em cadeias de vídeo 3D 

baseado em profundidade (2D+Z ou LDV). Além disso, uma arquitetura para a 

composição gráfica dessas aplicações, baseada no conceito de LDV e que permite a 

integração de objetos de mídia baseado em profundidade em exibidores de 

aplicações multimídias é apresentada. Como um exemplo de aplicação prática das 

proposta desta tese, ambas são implementadas e integradas em um sistema de vídeo 

3D fim-a-fim baseado no Sistema Brasileiro de TV Digital. 

 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

Palavras-chave 

Aplicações Multimídias; Documentos Multimídia; Estereoscopia; Video com 

profundidade; Vídeos em camadas com profundidade; 

  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

Table of Contents 

1 Introduction 19 

1.1. Motivating Scenario 19 

1.2. Objective 23 

1.3. Overview of the thesis proposals 25 

1.4. Contributions 27 

1.5. Outline 28 

2 Related Work 29 

2.1. Monoscopic 3D Multimedia Applications 30 

2.2. Multimedia Applications and Stereoscopic 3D Media 31 

2.3. Multimedia Applications and Depth-based 3D Media 33 

3 Stereoscopic Multimedia Applications 36 

3.1. Motivating Scenario 37 

3.2. Requirements Analysis 38 

3.3. Overview of the Proposed Solution 41 

3.4. Declarative Support for Stereoscopic Multimedia Presentations 42 

3.5. Stereoscopic Multimedia Document Converter 45 

3.6. Imperative Support for Stereoscopic Media Content 58 

3.7. Imperative Support Implementation 60 

3.8. Experimental Results 62 

3.9. Discussion 69 

4 Layered-depth-aware Multimedia Applications 73 

4.1. Motivating Scenario 75 

4.2. Overview of the Proposed Solution 76 

4.3. Layered-depth Extensions 78 

4.4. Layered-depth-aware Graphics Architecture 81 

4.5. Implementation 82 

4.6. Experimental Results 91 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

4.7. Concluding Remarks 96 

5 Conclusion 97 

5.1. Summary of the Contributions 97 

5.2. Future Research 100 

6 References 102 

Appendix A Fundamentals of 3D Video 114 

A.1. Human Perception of Depth 114 

A.1.1. Monocular cues 115 

A.1.2. Binocular cues 117 

A.1.3. Depth cues and distance 118 

A.2. 3D Displaying Technologies 119 

A.2.1. Stereoscopic Displays (Two views, eyeglasses based) 120 

A.2.2. Binocular Autostereoscopic 3D displays (Two views, no  

glasses required) 124 

A.2.3. Multi-view Displays (Many views, no glasses required) 126 

A.3. 3D Media Formats 127 

A.4. Geometry of Stereoscopic 3D Displays 132 

Appendix B Depth-based Layouts for Multimedia Applications 135 

B.1. Introduction 135 

B.2. Related Work 137 

B.3. Low-level 2D+Depth Support in Multimedia Languages 140 

B.4. High-level Depth-Based Layouts 141 

B.4.1. Depth-based Layout Processor 145 

B.5. Conclusion 147 

 
  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

List of Figures 

Figure 1 Examples of 3DV representations: (a) Conventional stereo 

video (CSV); (b) 2D plus depth (2D+Z); (c) Multi-view video (MVV);  

(d Multi-view video plus depth (MVD); and  

(e) Layered Depth Video (LDV). Adapted from (PICKERING, 2014). ............. 20 

Figure 2 The proposed approach to support stereoscopic multimedia 

applications. ......................................................................................................... 26 

Figure 3 Abstract view of the Layered-depth-aware Graphics Renderer. ........... 27 

Figure 4 Example of an interactive terrestrial 3DTV delivery chain based  

on CSV. ............................................................................................................... 37 

Figure 5 Example of a 2.5D user interface. Source:  

SeeSpace (http://inair.tv). .................................................................................... 40 

Figure 6 The three steps of the Stereoscopic Multimedia Document  

Converter. ............................................................................................................ 46 

Figure 7 Spatial properties in a stereoscopic multimedia application for the  

side-by-side output format. .................................................................................. 50 

Figure 8 NCLua script controlling a positioning property. ................................. 56 

Figure 9 Dynamically generated animation (using imperative stereoscopic 

3D canvas API) that presents moving circles inside and outside of the  

screen. .................................................................................................................. 61 

Figure 10 Example of an advertisement application using stereoscopic  

effects: (a) schematic view; (b) side-by-side format. .......................................... 63 

Figure 11 Example of an EPG application using the real depth information to 

organize elements in the user interface: (a) schematic view;  

(b) side-by-side. ................................................................................................... 64 

Figure 12 Example of a stereoscopic multimedia application integrated  

with a secondary device: (a) schematic view; (b) side-by-side format. .............. 65 

Figure 13  Asynchrony between left and right side of a stereoscopic 

 multimedia application. ...................................................................................... 67 

Figure 14 Frame rates of a pure NCLua application and its stereoscopic  

version using NCLuaCanvaS3D. ........................................................................ 68 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

Figure 15 Relationship between the performance of NCLua and 

NCLuaCanvaS3D. ............................................................................................... 69 

Figure 16 Example of a partial occlusion between a 2D+depth video and a 

3D model. ............................................................................................................ 74 

Figure 17 Example of an interactive 3DV delivery chain based on 2D+Z. ........ 75 

Figure 18 NCL Document as a glue language for 2D, 2D+Z, LDV, and  

3D media objects. ................................................................................................ 77 

Figure 19 Layered-depth-aware graphics architecture. ....................................... 81 

Figure 20 Structure of the LDI. ........................................................................... 84 

Figure 21 View synthesis for multi-view displays using LDI. ............................ 85 

Figure 22 A 3D point 𝒎 being projected in the reference and targeted 

image planes. Adapted from (DARIBO, ISMAEL et al., 2013). ........................ 85 

Figure 23 Geometry of a point P to be rendered in relation with viewer  

distance. Adapted from (HUANG et al., 2010)................................................... 86 

Figure 24 Example of warping multiple pixels to the same target position 

without a thread-safe access to the depth buffer (the frame is shown  

without hole filling). ............................................................................................ 88 

Figure 25 Examples of holes and ghosting artifacts generated by 3D  

warping. ............................................................................................................... 89 

Figure 26 Example of a frame before (top) and after (bottom) hole filling  

kernel execution. ................................................................................................. 91 

Figure 27 Example a (a) video+depth and a (b) the 2D+depth data  

produced by rendering a synthetic 3D object. ..................................................... 92 

Figure 28 The two layers (texture and depth) of the graphical composition 

between the media objects of Figure 27 using the LDI graphics  

architecture. ......................................................................................................... 93 

Figure 29 Example of a composition between a video+depth and a synthetic  

3D object. ............................................................................................................ 94 

Figure 30 Depth cues classification according to (GOLDSTEIN, 2014). ......... 115 

Figure 31 Monocular depth cues. Adapted  

from: (LEBRETON et al., 2014). ...................................................................... 117 

Figure 32 Binocular view and 3D image reconstruction. .................................. 118 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

Figure 33 Depth perception as a set of separate visual “layers”. Adapted 

from (GOTCHEV et al., 2011).......................................................................... 119 

Figure 34 A non-exhaustive classification of 3D displays. ............................... 120 

Figure 35 The Wheatstone stereoscope. It includes two mirrors (A' and A) 

placed at a specific angle to reflect the left and right eye drawings (E' and E) 

towards the viewer's eyes. The viewer must place his head in front of the  

mirrors to view images using the stereoscope. Adapted  

from (WHEATSTONE, 1838). ......................................................................... 121 

Figure 36 Different stereoscopic 3D techniques:  

(a) color-interlaced (anaglyph); (b) polarization-interlaced;  

(c) time-multiplexed; and (d) head-mounted display. Adapted  

from (GENG, 2013). ......................................................................................... 122 

Figure 37 Light redirecting in binocular autostereoscopic displays: parallax 

barriers (left) and lenticular sheets (right). (Source: 

https://en.wikipedia.org/wiki/Autostereoscopy). .............................................. 125 

Figure 38 Principles of multi-view autostereoscopic 3D displays. As the user 

moves his head, different light beams, i.e., different viewpoint images, are 

perceived. (a) In the real world, the number of viewpoints is infinite;  

(b) Multi-view 3D displays provide a finite number of viewpoints of the  

world, which can be (c) captured from multi camera arrays. Adapted 

from (DODGSON, 2002). ................................................................................. 126 

Figure 39 Frame-compatible approaches to codify CSV: (a) top-and-bottom; 

(b) side-by-side; (c) checkerboard; (d) row interlaced; and (e) column 

interlaced (◉ denotes samples from the first view; ○ denotes samples from 

the second view). ............................................................................................... 128 

Figure 40 Representation of a layered-depth image. Left column, top: 3D  

scene; bottom: scheme of lines of sight. Right column, top: front layer;  

middle: second layer; bottom: last layer. Depth layers are not 

shown. (CAGNAZZO; PESQUET-POPESCU; DUFAUX, 2013). .................. 131 

Figure 41 Differences between MVD and LDV. On the left side, MVD is  

shown for three cameras in a simple scene. On the right hand side, a  

simplified LDV representation (only one additional layer and represents  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

only the residual information) is displayed. Adapted  

from (BARTCZAK et al., 2011). ...................................................................... 131 

Figure 42 Stereoscopic viewing parameters, with an image point projected 

behind the screen, i.e., with positive parallax. .................................................. 133 

Figure 43 Relationship between different types of parallaxes and depth 

perception. (a) positive parallax; (b) zero parallax; (c) negative parallax. ........ 134 

Figure 44 Example of a stereoscopic 2D+depth multimedia application (in 

horizontal interlaced mode). .............................................................................. 136 

Figure 45 2D-only layout templates examples: (a) box layout;  

(b) grid layout; and (c) flow layout. .................................................................. 138 

Figure 46 Examples of depth-based layout templates: (a) Stack layout; 

(b) DepthFlow layout; (c) DepthGrid layout; and (d) Carousel layout. ............ 143 

Figure 47 Architecture of the depth-based layout processor. ............................ 146 

Figure 48 Two-step template processing. .......................................................... 148 

 

  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

Abbreviations and Acronyms 

2D Two-dimensional 

2D+Z 2D plus depth 

3D Three-dimensional 

3DTV Three-dimensional Television 

3DV Three-dimensional Video 

AFX Animation Framework eXtension 

API Application Programming Interface 

AR Augmented Reality 

ATTEST Advanced Three-dimensional Television System Technologies 

BIFS BInary Format for Scenes 

CSS Cascading Style Sheets 

CSV Conventional Stereo Video 

DIBR Depth-Image-Based Rendering 

DMB-T Digital Multimedia Broadcasting—Terrestrial 

DOM Document Object Model 

DTV Digital Television 

EPG Electronic Programming Guide 

FBO Framebuffer Object 

FPGA Field-Programmable Gate Array 

fps frames per second 

FTV Free-viewpoint Television 

Full-HD Full-High Definition 

GPGPU General-purpose Computing on Graphics Processing Units 

GPU Graphics Processing Unit 

GUI Graphical User Interface 

HD High-Definition 

HDR High Dynamic Range 

HTML HyperText Markup Language 

HVS Human Visual System 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

 

IBR Image-based Rendering 

iDTV Interactive Digital Television 

IPTV Internet Protocol Television 

IR Infrared 

ISDB-T Integrated Services Digital Broadcasting—Terrestrial 

ITU International Telecommunication Union 

ITU-T ITU Telecommunication Standardization Sector 

LC Liquid Crystal 

LCD Liquid Crystal Display 

LDI Layered-depth Image 

LDV Layered-depth Video 

MPEG Motion Picture Expert Group 

MSR Mixed Scene Resolution 

MVD Multi-view plus depth 

MVV Multi-view video 

NCL Nested Context Language 

NCLSC NCL Stereo Converter 

QoE Quality of Experience 

S3D Stereoscopic 3D 

SbS Side-by-side 

SBTVD Sistema Brasileiro de TV Digital (Brazilian Digital TV System) 

SDK Software Development Kit 

SMIL Synchronized Multimedia Integration Language 

SVG Scalable Vector Graphics 

TaB Top-and-bottom 

URI Uniform Resource Identifier 

URL Uniform Resource Locator 

VR Virtual Reality 

VRML Virtual Reality Markup Language 

X3D eXtensible 3D 

XML eXtensible Markup Language 

XSL eXtensible Stylesheet Language 

XSLT XSL Transformations 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



        

 

  

Mathematical Notation and Symbols 

 

𝑓 Focal length 

𝒎 Original camera pixels coordinate 

𝒎𝒘 3D world coordinate 

𝒎𝒗 Virtual camera pixels coordinate 

𝑃 Screen parallax 

𝑉 Distance of the observer to the screen 

𝐸 Interocular or interpupillary distance 

𝑍𝑖 Observed depth of a point projected (with parallax 𝑃) in the screen 

𝑍𝑚 Offset term to depth perception (with must be summed to 𝑉) 

𝑍𝑛𝑒𝑎𝑟 Minimum allowed depth value 

𝑍𝑓𝑎𝑟 Maximum allowed depth value 

𝛿(𝑥) Screen parallax value of a media object 𝑥 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       19 

 

1 
Introduction 

1.1. 
Motivating Scenario 

Two-dimensional (2D) video technologies have  advanced to increase spatial 

resolution and color quality. Nevertheless, they do not achieve a realistic and 

immersive view of the world since they do not offer important depth cues to the 

human vision system (HVS). Three-dimensional video (3DV) technologies try to 

fulfill this gap through video representations that enable 3D displays to provide 

those additional depth cues. 3DV and 3D display technologies have a huge range 

of applications, which include 3D Cinema, 3D Television (3DTV), Free-viewpoint 

Television (FTV) (TANIMOTO, 2012), and Telepresence (FUCHS; STATE; 

BAZIN, 2014). 

To date, the most common and more developed approach for 3DV 

representation is the so-called conventional stereoscopic video (CSV). CSV-based 

systems are those that use a scene representation composed of two slightly different 

views (a stereo-pair) to be independently presented for each eye. Whereas CSV-

based technologies have been the most used approach for 3DV, they have their own 

well-known problems. For instance, CSV-based technologies require the use of 

glasses (with the aim of filtering each eye’s view), they lack depth cues based on 

movement (motion parallax), and they are hard to adapt to different viewing 

conditions (FEHN, 2004). 

To solve some of the aforementioned issues, and to support new 3D media 

applications, other 3DV representations have been emerging. Video plus 

Depth (2D+Z) (FEHN, 2003b), Multi-view Video (MVV) (HO; OH, 2007), Multi-

view Video plus Depth (MVD) (CHEN, YING et al., 2014), and Layered-depth-

video (LDV) (SHADE et al., 1998) are among the most important ones. Figure 1 

shows examples of those representations. 2D+Z format represents a unique 

view (conventional 2D video) of the scene with additional depth information. The 

depth information is commonly represented as a gray-scale image, in which 0 (or 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       20 

 

  

black) means far from the viewer (inside the display), whereas 255 (or white) 

means close to the viewer. MVV format represents multiple viewpoints of the 

scene (not only a stereo-pair as in CSV). MVD is an extension of MVV, in which 

every viewpoint is associated with depth information. Finally, LDV is an extension 

of the 2D+Z in which besides the 2D view and depth information, background 

information is also represented. In particular, 3DV formats based on explicit depth 

information (2D+Z, MVD, and LDV) allow for detaching the 3DV format from the 

display and viewing conditions. In addition, they allow for transmission bandwidth 

optimizations and for generating additional views at the client side. A common 

approach for generating those additional views is using depth-image-based 

rendering (DIBR) (FEHN, 2003a). 

 

 

Figure 1 Examples of 3DV representations: (a) Conventional stereo 

video (CSV); (b) 2D plus depth (2D+Z); (c) Multi-view video (MVV); (d Multi-

view video plus depth (MVD); and (e) Layered Depth Video (LDV). Adapted 

from (PICKERING, 2014). 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       21 

 

  

End-to-end 3DV delivery chains based on 3DV formats have also been 

studied during the last years. CSV-based delivery chains are the most developed 

ones. Some approaches have already been standardized by the major digital 

TV (DTV) standards (ATSC, 2014; DVB, 2015), and some commercial trials have 

been performed. Concerning depth-based formats, two European projects deserve 

mention: ATTEST (REDERT et al., 2002) and 3D4YOU (BARTCZAK et al., 

2011). ATTEST (“Advanced Three-dimensional Television System 

Technologies”) proposes an end-to-end broadcasted 3DTV system based on the 

2D+Z format. On the other hand, 3D4YOU project has studied the usage of the 

LDV format. Those (and similar) projects have achieved important contributions, 

showing the viability of using the different 3DV formats in end-to-end delivery 

chains, and discussing their advantages and disadvantages. 

The fast development of the new 3DV representations mentioned above in all 

their phases (content creation, coding, transmission, and display) has enabled 

multimedia applications to take advantage of them. Multimedia applications—

sometimes referred as richmedia (LIM et al., 2012)(DUFOURD; AVARO; 

CONCOLATO, 2005)—are those digital applications composed of multiple (at 

least two) synchronized modalities—e.g., text, images, animations, video, audio 

(including speech), synthetic graphics (both 2D and 3D)—and that can support user 

interaction (Li, Drew, and Liu 2014). Examples of multimedia applications include 

those for the Web, Digital TV, and Interactive Cinema. Multimedia applications 

can be specified through using declarative or imperative programming languages. 

Declarative languages are those in which authors are required to specify only 

the properties and the expected solutions. Examples of declarative languages 

include HTML (“HTML5”, 2014, p. 5), SMIL (BULTERMAN et al., 2008), 

SVG (MCCORMACK et al., 2011), NCL (SOARES; LIMA, 2013), 

X3D (BRUTZMAN, 2007), and XMT (SIGNES; FISHER; ELEFTHERIADIS, 

2000). Imperative languages, on the other hand, are those in which authors describe 

how to reach a solution as a sequence of steps. Examples of imperative languages 

include C, C++, Java, Javascript, and Lua. The textual specification of a multimedia 

application following declarative constructions is named a multimedia document. 

On the one hand, when compared to imperative languages, declarative languages 

provide a higher level of abstraction, which results in more reliable and easier to 

maintain software. On the other hand, declarative languages are usually domain 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       22 

 

  

specific, which means they are not adequate for every task. As a consequence, 

declarative and imperative paradigms are commonly used together, with the latter 

being useful as a scripting language (for controlling complex behaviors) of the 

former. 

The integration of the new 3D media representation formats with multimedia 

applications has the potential of allowing new rich content, new user experiences 

and new business models. In this scenario, it is possible to have multimedia 

applications using depth information provided by 3D displays not only as an 

additional technology, but also as a way to spatially structure user interfaces—e.g. 

occupying the space between the user and the display—providing genuine user 

interfaces (WOO; SUH; CHEON, 2012) (JUMISKO-PYYKKÖ; WEITZEL; 

STROHMEIER, 2008). It is possible to envision 3D display users not only 

watching videos in 3D, but also browsing the Web, participating in interactive 

games, consulting additional information on a TV program, and so on; all using real 

3D depth information (CHISTYAKOV; GONZÁLEZ-ZÚÑIGA; CARRABINA, 

2013). 

Aware of those possibilities, some efforts have already followed the path of 

integrating interactive multimedia services into end-to-end 3DV delivery 

chains (LEE, BONGHO; YUN; LEE; et al., 2009; LE FEUVRE, 2010). Some of 

them have been proposed to CSV-based end-to-end delivery chains. However, 

those systems usually require native support by the language player and they are 

not backward compatible with older 2D-only language players. Other works have 

included depth-based 3D media support into complete 3D multimedia scene 

environments. In such a case, the 3D media are included as objects in a full 3D 

world scene model. That approach is useful in many application scenarios. 

However, it cannot support real-time rendering of scenes containing high-

quality (Full-HD or higher) 3DV-based services using current available graphics 

hardware. 

A more recent approach is to rely on a 2D+Z multimedia scene representation 

and uses a DIBR approach for rendering the final views of the entire multimedia 

scene. In this case, it is the possible to support high-quality (full-HD or higher) 3DV 

media objects while allowing real-time performance. The main problem with this 

method is the introduction of annoying artifacts (such as holes and cracks)—which 

is an inherent issue of DIBR approaches—in the final generated views. The work 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       23 

 

  

presented in this thesis tries to solve or minimize these problems, as stated in its 

objectives. 

 

1.2. 
Objective 

Motivated by the context above, the overall aim of this work is to explore the 

integration of new 3D media formats into multimedia applications. In broad terms, 

this work is interested in allowing for the composition of interactive multimedia 

applications containing both synthetic and natural (2D and 3D) media objects. In 

the scope of the thesis, synthetic media objects are those that are rendered at the 

client side, whereas natural media objects are those pre-rendered or captured from 

real world (e.g. ordinary video and images). In particular, we focus on the 

integration of the previously mentioned 3D media representation (CSV, 2D+Z, 

MVV, MVD, and LDV) into multimedia applications specified using declarative 

languages. 

More specifically, the main goal of the work is to provide a framework, based 

on declarative multimedia languages, for easing the development of spatially 

structured multimedia applications in the context of 3DV end-to-end delivery 

chains. Those applications must be able to handle the new 3D media formats, and 

must allow a seamless integration of the different (2D and 3D) media objects with 

the main video in 3DV-based environments. Having the aim of reusing the already 

existing declarative languages for the specification of multimedia presentations, this 

work focuses on the integration of 3D media into current multimedia languages. 

When needed, extensions for those languages are proposed. 

Interactive multimedia applications based on (3D) videos—e.g. those for 

interactive 3DTV and 3D Cinema—are the main use cases of the proposals herein. 

The general research question addressed by this work is: 

 

RQ.1.  How to support the design and presentation (on 3D displays) of 

interactive multimedia applications containing (natural and 

synthetic) 2D/3D media objects in 3DV delivery chains? 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       24 

 

  

However, this work is more specific when providing particular answers to the 

general question. The work focuses on two main scenarios. 

The first one is based on a 3DV delivery chain using the CSV format. In this 

scenario, the aim is to extend the CSV-based 3DV with interactive multimedia 

content, addressing the following research questions: 

 

RQ.2.  How to extend current 2D-only declarative multimedia languages to 

allow the design of multimedia applications relating 2D and CSV-

based 3D objects? 

 

RQ.3.  How to support the execution of multimedia applications, developed 

using the extended declarative languages of RQ.2, to be presented 

on 3D displays keeping unchanged the original language player? 

 

In other words, RQ.3 is equivalent to answering: “how to support the 

backward-compatibility of multimedia applications containing CSV-based media 

objects with current 2D-only multimedia language players?” 

The second scenario is a 3DV delivery chain based on 2D+Z or LDV formats. 

In that scenario, the following research questions are addressed: 

 

RQ.4  How to extend current declarative multimedia languages to allow 

for the design of multimedia applications composed of 2D, 2D+Z, 

LDV, and 3D media objects? 

 

RQ.5  How to support the real-time execution of multimedia applications 

addressed by RQ.4 to be presented on 3D displays? 

 

In this second scenario, 2D, 2D+Z, LDV and 3D media objects can be both 

synthetic or natural. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       25 

 

  

1.3. 
Overview of the thesis proposals 

To answer the questions related to the two mentioned scenarios, this work is 

divided into two main parts, namely Stereoscopic Multimedia Applications, and 

Layered-depth-aware Multimedia Applications.  

 

1.3.1. 
Stereoscopic Multimedia Applications 

The first part of the thesis focuses on answering RQ.2 and RQ.3. For that, the 

concept of stereoscopic multimedia applications is proposed. A stereoscopic 

multimedia application is one in which the left and right side views required by a 

stereoscopic 3D (S3D) display are explicitly codified. Standard input formats for 

S3D-based 3DTV sets are targeted as output, such as side-by-side and bottom-up 

formats. One of the main advantages of the proposed approach for supporting 3DV 

in multimedia application is that it is backward-compatible with current 2D-only 

language players. 

The proposed approach takes as input 2D multimedia applications annotated 

with depth information, and converts them into stereoscopic multimedia 

applications, at the application-level (see Figure 2). What we mean by application-

level is that the converter can translate (at client or server side) the original 

application to one that uses only the low-level 2D primitives supported by the 

original language player. The depth annotation in the input document allows for 

creating a stereo-pair as output. Therefore, individual 2D multimedia objects can 

float in or out of the screen when those applications are presented in S3D displays. 

Native CSV-based media objects, such as CSV-based videos, images, and dynamic 

generated animations (through an extended script API), can also be integrated and 

related with other media objects into the CSV-based multimedia scene. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       26 

 

  

 

Figure 2 The proposed approach to support stereoscopic multimedia 

applications. 

Issues related to the quality of experience (QoE) on stereoscopic-multimedia 

applications, such as asynchrony between the left and right views, and depth 

perception customization are handled in the proposed conversion process. The 

overall conversion process is proposed in an abstract way and can be performed 

both at the client side and at the server side, depending on the available transmission 

bandwidth and client receiver resources. In addition, an implementation of the 

proposed process for the NCL language is presented. 

The approach employed in this first part allows for augmenting CSV-based 

delivery chain with rich interactive stereoscopic 3D services. It also provides a 

framework for creating applications which can spatially organize graphical 

elements using the real depth information, e.g., filling the space between the user 

and the display. The integration of stereoscopic multimedia applications in CSV-

based 3DTV delivery chains and in 3D Cinema are discussed. 

 

1.3.2. 
Layered-depth-aware Multimedia Applications 

On the one hand, the approach employed in the first part of the thesis has the 

evident advantage of not requiring any change in the language player (since the 

proposed converter works at the application). On the other hand, it has the 

disadvantage of only supporting 2D and CSV-based media objects. For 2D media 

objects, it allows authors to associate only a uniform depth for each media object, 

which means that every pixel of the object will have the same depth. 

Aiming at improving that issue, and focusing on RQ.4 and RQ.5, the second 

part of the thesis supports the integration of depth-based 3D media in multimedia 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       27 

 

  

applications. Extensions to multimedia languages that allow for controlling the 

composition of the depth-based 3D media with other media objects in the 

application are proposed. The extensions also allow for adding depth and occlusion 

layers information to media objects that do not have those information natively. In 

order to achieve sufficient performance, the proposed approach needs to provide 

support at the language player level. 

A graphics architecture supporting a seamless integration among 2D, 2D+Z, 

LDV, and 3D (synthetic) media is discussed (Figure 3). The graphics architecture 

of a multimedia platform is the part of the system software that handles the graphics 

composition among the different individual media objects and renders the system 

output on the screen (CESAR, 2005). In our case, the graphics architecture must 

support the rendering of multiple views, required by 3D displays. Aiming at 

achieving real-time performance, the proposed architecture is implemented using 

GPU (Graphics Processing Unit), through the OpenCL API (MUNSHI, 2012). The 

innovative concept of the proposed graphics architecture is that it is based on the 

concept of LDV format. When compared to other related works the proposed 

graphics architecture allows for better rendering results, while still keeping real-

time performance. 

 

 

Figure 3 Abstract view of the Layered-depth-aware Graphics Renderer. 

 

1.4. 
Contributions 

In summary, the thesis aims to bring the following contributions: 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       28 

 

  

 Extensions to 2D-only multimedia applications that simplify the 

development of interactive multimedia applications using CSV-based 

media for being presented on S3D displays; 

 A framework for generating stereoscopic-multimedia applications, while 

keeping the language player unchanged; 

 Extensions to multimedia languages that ease the development of 

interactive multimedia applications for 3DV systems based on 2D+Z or 

LDV format. 

 A software architecture for the rendering of multimedia applications 

composed of 2D, 2D+Z, LDV, and 3D media objects (and that support 

the extensions above). 

 

1.5. 
Outline 

The remainder of the thesis is organized as follows.  

 

Chapter 2   discusses some related works and compares them with the proposals 

herein. 

Chapter 3  details the proposal for supporting stereoscopic multimedia 

applications at the application-level, and discusses QoE issues related 

to them.  

Chapter 4  describes the proposal for integrating depth-based media objects into 

multimedia applications, and details the proposed graphics 

architecture and implementation that support such integration.  

Chapter 5  concludes this work and presents some future work possibilities. 

 

In addition, Appendix A discusses introductory concepts related to 3DV, such 

as how the human vision system is able to reach depth perception, and the currently 

available 3D displaying technologies. Mathematical background behind depth 

perception in S3D displays is also discussed. As an additional contribution of this 

thesis, Appendix B introduces some layout templates that ease application 

authoring using the proposals of Chapter 3.  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       29 

 

  

2 
Related Work 

Low-level imperative graphics APIs, such as OpenGL (SHREINER et al., 

2013) and DirectX (GRAY, 2003), provide the necessary means for expert 

programmers to render multiple media objects, compose multimedia scenes, and 

generate the different views required by stereoscopic or multi-view 3D displays. 

Indeed, the graphics architecture proposed in Chapter 4 takes advantage of such 

lower-level APIs. Some higher-level imperative APIs allow for structuring 3D 

synthetic scenes through the use of the Scene Graph (CLARK, 1976) concept—e.g. 

OpenSceneGraph (OSFIELD; BURNS; OTHERS, 2004). Those APIs can be 

extended to support the generation of the multiple views, required by 3D 

displays (DANE; BHASKARAN, 2013). Although those APIs allow some 

abstractions over the lower-level OpenGL/DirectX, they are still imperative 

approaches and require advanced programming skills. Unlike those approaches, the 

main goal of this work is to support the design of multimedia applications through 

declarative multimedia languages. Minor imperative support is also part of the 

proposed approaches, but they are based on the extension of scripting languages 

that are attached to declarative multimedia languages. The related work discussion 

in this chapter is then limited to the scope of proposals supporting 3DV and 3D 

displays in declarative multimedia applications. 

Section 2.1 presents some of the declarative languages currently in use for the 

development of multimedia presentations based on monoscopic 3D—i.e., 

traditional computer graphics that generates images based on a 3D coordinate 

system and presents them on 2D displays. Section 2.2 discusses previous proposals 

for extending multimedia languages with the aim of allowing them to be presented 

on 3D displays. Those proposals are relatively new, and they have been mainly 

driven by the renewed interest in S3D technologies and the affordable prices of 

currently available S3D displays. Finally, Section 2.3 discusses work on 

multimedia languages to be presented on multi-view displays. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       30 

 

  

2.1. 
Monoscopic 3D Multimedia Applications 

Many efforts have aimed at bringing synthetic 3D objects to the Web. 

Technologies such as VRML (ISO, 1997), X3D (BRUTZMAN, 2007), and 

O3D (“O3D Project’s page”, [S.d.]) are examples of such efforts. At first, those 

technologies were mainly implemented in web browsers through the use of plug-

ins APIs (ORTIZ JR., 2010). Recently, driven by the introduction of the WebGL 

API (KRONOS GROUP, 2013), it is also possible to find the implementation of 

players for those languages at the application-level. In the scope of the Web, that 

technique is usually called Polyfill, and examples of players following that 

approach include X3DOM (BEHR, JOHANNES et al., 2009) (BEHR, J. et al., 

2010) (BEHR, JOHANNES et al., 2011) and XML3D.js (SONS et al., 2013). 

In the scope of interactive digital television (iDTV), some proposals also 

follow this direction. Based on the NCL multimedia language—the Brazilian 

standard for interactive Digital TV—(AZEVEDO, 2010) embeds 3D objects (both 

simple, such as OBJ, and composite, such as VRML/X3D) into the language and 

extends it to define anchors and to control the behavior of 3D objects. (SOUZA et 

al., 2010) also discusses the integration of X3D objects into the Brazilian Digital 

TV system and includes the support for imperative APIs based on Java/OpenGL 

ES. (CESAR; VUORIMAA; VIERINEN, 2006) presents a software graphics 

architecture for high-end interactive television terminals and discusses new 

interactive scenarios that can emerge when native rendering of 3D objects is 

supported in iDTV middlewares. 

As argued by (CHEN, QINSHUI et al., 2014), the above technologies can be 

broadly classified as monoscopic 3D, since they are: “traditional computer graphics 

that generates images based on a 3D coordinate system, and then presents those 

images on 2D display”. The integration of 2D graphical elements which are part of 

the original declarative document (HTML or NCL) with embedded 3D scenes 

remains a research issue in the literature (JANKOWSKI et al., 2013; LE FEUVRE, 

2012). Other requirements for better integration of Web applications and 3D 

documents are presented in (LE FEUVRE, 2012). The support for 3D displays is 

among the requirements highlighted by Le Feuvre. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       31 

 

  

In the scope of this thesis, we are interested in multimedia applications based 

on a main 3DV, such as 3DTV and 3D Cinema applications. Furthermore, we are 

interested in using natural 3D media (CSV, 2D+Z or LDV) in the multimedia scene, 

which is not completely supported in current multimedia languages. Besides the 

support for depth-based 3D media, we are also interested in providing abstractions 

to multimedia authors to allow them to control the depth information of every 

graphical element in a multimedia application, even those that do not have native 

depth information. 

Unlike VR environments, in which a complete 3D environment is necessary, 

the kind of applications we are interested in do not necessarily use stereoscopic 

effects to improve the user’s immersion in a virtual environment. The effects can 

also be used to provide additional interactive effects, e.g. highlighting active 

elements in the user interface or spatially positioning the user interface. 

 

2.2. 
Multimedia Applications and Stereoscopic 3D Media 

Since the beginning of the Web, there have been many examples of websites 

specifically developed to reach stereoscopic effects, mainly through anaglyph 

techniques (“Awwwards Team: 10 stereoscopic 3d websites”, 2011). More 

recently, driven by the growing availability at affordable prices of 3D displays, it is 

now possible to see some efforts that, as in this thesis, aim at extending current 

multimedia languages to allow their presentation on 3D displays. Since most of the 

3D displays available on the market are stereoscopic-based, most of those proposals 

are based on stereoscopic-only content. 

CSS “Extensions for Stereoscopic 3D support” (HANG; LEE, 2012) is a draft 

proposal that has been developed by W3C. This specification proposes a set of CSS 

properties that can be associated to graphical elements in HTML, which state how 

they should be presented on a stereoscopic 3D display. 

(WANG et al., 2014) also discusses similar extensions to the support of 

stereoscopic applications in HTML. Besides the CSS properties, Wang et al. 

propose a new HTML element (<frame>) and a new JavaScript object (‘format’). 

The extensions proposed by Wang et al. are implemented in the Webkit (APPLE, 

2015) rendering motor. Other publications of the same group that detail their 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       32 

 

  

proposal include (ZHANG, JIANLONG et al., 2014) (CHEN, QINSHUI; WANG; 

WANG, 2014) (CHEN, QINSHUI et al., 2014). 

(LIU; WANG; WANG, 2014) extends the Webkit rendering motor in order 

to allow SVG documents to be presented on S3D displays. Liu et al. propose two 

attributes to the SVG language: thickness and depth. Those attributes allow authors 

to control how SVG’s graphical elements are disposed “inside” or “outside” the 

screen. 

(LEE, HYUN et al., 2007) (LEE, BONGHO; YUN; HUR; et al., 2009) (LEE, 

BONGHO; YUN; LEE; et al., 2009) and (JUNG et al., 2008) allow the integration 

of interactive content in a 3DTV services based on video plus depth, in the context 

of T-DMB (Terrestrial–Digital Multimedia Broadcasting) (SABIRIN et al., 2012). 

As the main transmitted video is based on video plus depth, the Lee et al.’s system 

could theoretically support not only stereoscopic-only 3D displays, but also multi-

view displays. However, the interactive content itself is based on stereoscopic 

image pairs. A “homemade” XML document controls when additional media 

objects must start or stop. The lack of explicit depth information also incurs other 

drawbacks, such as the lack of support to movement-parallax and the 

“impossibility” of adapting the multimedia presentation to different viewing 

conditions. Moreover, Lee et al. and Jung et al. define a new multimedia language, 

which has only very simple features when compared to the current standard 

multimedia languages. In this thesis, we focus on extending the currently available 

multimedia language standards, and reuse their powerful behavior specification. 

The aforementioned proposals are intended to be natively supported by the 

language player. Different from them, the first part of this thesis aims at supporting 

the stereoscopic effects at the application-level, which means we do not need any 

native support, but we can take advantage of this support when it exists. 

Among the related work, the proposals of Zhang et al. (ZHANG, SHAOBO; 

ZHOU; SUN, 2012) and Chistyakov et al. (CHISTYAKOV; GONZÁLEZ-

ZÚÑIGA; CARRABINA, 2013) are those closest related to the first part of this 

thesis. Both proposals implement a JavaScript library that generates stereoscopic 

webpages. Zhang et al. rely on the HTML5 Canvas API (CABANIER et al., 2015, 

p. 3) to generate the left and right views of the webpage. Chistyakov et al. use the 

DOM API (HÉGARET et al., 2004) to duplicate the HTML elements and produce 

the final stereoscopic application. Similarly, the first part of this thesis also 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       33 

 

  

produces a new declarative stereoscopic version of the application. However, using 

the declarative constructions of the multimedia language, our proposed process can 

ensure a frame-based synchronization between the two instances (left and right) of 

dynamic media objects (such as videos and script-based animations). The 

synchronization problems of left and right view have not been handled or discussed 

by the approach of Chistyakov et al.. Moreover, other differentials of the first part 

of this thesis include: the adaptation of the output application to processing 

parameters (e.g., display size, viewer distance, and parallax scale factor); the 

support for the development of script-based animations; and the integration of 

CSV-based and 2D-only media objects with depth extensions. 

 

2.3. 
Multimedia Applications and Depth-based 3D Media 

Besides the aforementioned work that focus only on binocular 3D displays, 

there have been also some efforts considering multi-view display. 

Tsai (TSAI; YOUNG; KU, 2012) presents a Flash1 player that supports depth 

map configurations. Tsai’s proposal allows the conversion of 2D multimedia scenes 

into 3D scenes based on DIBR. The author of the multimedia scene is able to control 

a per-pixel depth map for the entire scene. The proposals of this thesis, on the other 

hand, allow multimedia authors to control the depth information for each media 

object individually. The multimedia language player is responsible for the graphics 

composition of the entire scene based on the information of the each object. 

An example of the integration of webpages with multi-view displays is 

presented by Nocent et al. (NOCENT et al., 2012). Their work, however, does not 

integrate any functionality to the declarative multimedia language (HTML, in this 

case). It uses the WebGL (KRONOS GROUP, 2013) imperative API to generate 

one or more views that can be used as inputs for 3D displays. The depth effect is 

only perceived inside the WebGL canvas. Therefore, the integration with other 

elements in the webpage is not supported. In contrast, the approaches proposed in 

this thesis allow multimedia application authors to specify and dynamically control 

the depth information of any media object that is part of the application. 

                                                 
1 Available at http://www.adobe.com/products/flash.html 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       34 

 

  

BIFs AFX (Animation Framework eXtension) provides depth-

nodes (LEVKOVICH-MASLYUK et al., 2004) that can be integrated into a 3D 

BIFs scene. The AFX approach is interesting to support the integration of depth-

based media into a complete 3D environment, such as VR environments. However, 

as that proposal integrates the depth-objects into a traditional polygon-based 

rendering pipeline, they cannot take full advantage of the performance allowed by 

image-based rendering (MCMILLAN JR., 1997). An image-based rendering 

approach, as the one used in the second part of this thesis, has the potential to 

provide real-time performance even for high quality 3DV (e.g. Full HD or higher). 

Another work, mainly related to the second part of the thesis, is the one 

developed by Jean Le Feuvre (LE FEUVRE, 2010)(LE FEUVRE; MATHIEU, 

2013). Depth-based extensions to the SVG language allow its execution on multi-

view displays as suggested in (LE FEUVRE, 2010), whereas a graphics architecture 

for supporting those applications is presented in (LE FEUVRE; MATHIEU, 2013). 

Two solutions are presented in (LE FEUVRE; MATHIEU, 2013): one based on 

GPU, mainly developed for testing purposes; and another one based on 

FPGA (Field Programming Gate Array) to be included in low-cost platforms. Both 

solutions are integrated with the GPAC (LE FEUVRE et al., 2011; LE FEUVRE; 

CONCOLATO; MOISSINAC, 2007) multimedia framework. The second solution 

is the one closest to this work: it produces a 2D+Z representation of the entire scene 

and then sends it to FPGA. The FPGA is then responsible for generating the views 

required by 3D displays using DIBR. 

In comparison with Le Feuvre’s work, the extensions to multimedia 

languages and the graphics composition solution presented in the second part of 

this thesis are based on the LDI/LDV concept, which allow us to reach better 

rendering results. That is mainly explained by the fact that our proposal keeps as 

much occlusion information as possible while graphically compositing the different 

media objects. We also support the proposed extensions in script-based canvas-like 

APIs, commonly integrated with the main declarative multimedia language. In 

addition, besides the native support for depth extensions (the second part of the 

thesis), we also discusses the application-level support for stereoscopic multimedia 

presentations (the first part of the thesis). 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       35 

 

  

Compared to all the aforementioned related work, the work on this thesis is 

the only one that provides a multimedia scene model based on LDI and to support 

the rendering of multiple views for 3D displays based on such concept.  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       36 

 

  

3 
Stereoscopic Multimedia Applications 

This chapter proposes a set of extensions to multimedia languages and a 

converter aiming at the development of stereoscopic multimedia application. A 

stereoscopic multimedia application is a multimedia application that codifies both 

the left and right views of a multimedia application following one of the frame-

compatible approaches for CSV (side-by-side, top-bottom, etc.). As a result, the 

generated stereoscopic multimedia presentation is ready-to-run on current S3D 

displays (see Figure 2). 

More precisely, the proposal encompasses: (i) extensions to multimedia 

documents that allow authors to add CSV-based media objects and control how 2D-

only media object can be presented stereoscopically; and (ii) a conversion process 

that generates stereoscopic multimedia applications based on input documents 

using the proposed extensions. 

As an example of the conversion process, an implementation for the NCL 

multimedia language is presented. 

Unlike mechanisms for converting 2D-to-S3D video—a built-in feature of 

most 3DTV sets available today, and an active area of research in Computer Vision 

research community—the proposal in this chapter does not intend to convert 

elementary media (e.g. video or image) content to S3D. Instead, the focus here is 

on converting 2D interactive multimedia presentations to their stereoscopic 

versions in the multimedia document level. Automatic 2D-to-S3D conversion 

mechanisms for video-only are typically based on fallible heuristics to infer the 

depth information. In contrast, the conversion process proposed in this chapter uses 

depth information supplied by document authors. As a consequence, it does not 

suffer from those issues. 

The remainder of the chapter is organized as follows. Section 3.1 details the 

motivating scenario (which was briefly introduced in Chapter 1). Based on this 

scenario, Section 3.2 discusses the main requirements the proposals in this chapter 

must support. Sections 3.3 to 3.7 detail the proposed solution. Section 3.8 discusses 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       37 

 

  

some experimental results. Finally, Section 3.9 is reserved for the analysis of the 

complexity and a discussion on issues related to the quality of experience (QoE) of 

the generated stereoscopic applications. 

 

3.1. 
Motivating Scenario 

The motivating scenario for the proposals in this chapter is an interactive 

3DV-based distribution chain based on the conventional stereoscopic 

representation for 3DV—which, as aforementioned, is the most commonly used 

approach by current commercial systems. 3DV representation using CSV formats 

is also a key factor to guarantee compatibility with existing 2D video networking 

technology and equipment (KONDOZ; DAGIUKLAS, 2014). Figure 4 depicts an 

example of such a distribution chain in broadcasted terrestrial 3DTV services. 

 

 

Figure 4 Example of an interactive terrestrial 3DTV delivery chain based 

on CSV. 

In this scenario, the multimedia application (and its individual media 

components) is multiplexed together with the main audio and video streams into a 

transport stream (TS). The resulted bitstream is then modulated (in the case of a 

terrestrial digital TV system) or encapsulated and transmitted into IP packets (in the 

case of an IPTV system). The client is responsible for receiving the multiplexed 

bitstream, de-multiplexing the main audio/video and the multimedia application, 

and delivering them to the components responsible for decoding each of those data. 

The language player (usually part of a digital TV middleware) is the component 

responsible for interpreting the multimedia document and for creating a multimedia 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       38 

 

  

presentation accordingly. The main audio and video can also be part of (and be 

controlled by) the multimedia application. 

Hybrid delivery approaches are equally possible in the scenario. For instance, 

the main 3DV can be broadcasted while the multimedia application can be accessed 

through another transport network (e.g. Internet). It is also possible to have the basic 

2D content (video-only or video+data) broadcasted and to have the augmented 

additional layer (e.g. the right-view of a stereoscopic video) coming from another 

transport network. 

A low-end digital receiver is considered in this scenario. The kinds of low-

end digital receiver that are part of the scenario are those that Pablo et al. (CESAR; 

VUORIMAA; VIERINEN, 2006) have defined as Interactive Basic (in the case it 

does not have a high speed return channel) or Interactive Internet Access (in which 

case it has a faster return channel). On the one hand, those digital receivers support 

declarative 2D multimedia language environments such as those provided by 

HTML, SMIL, or NCL. On the other hand, they do not necessarily have enough 

graphical power to render 3D objects natively—i.e. they lack a powerful 

GPU (Graphical Processing Unit) that supports OpenGL or DirectX 3D-like APIs. 

 

3.2. 
Requirements Analysis 

Even with a lot of efforts aiming at supporting synthetic (client-side rendered) 

3D objects into iDTV middlewares (AZEVEDO, 2010; CESAR; VUORIMAA; 

VIERINEN, 2006; SOUZA et al., 2010) none of the currently in use iDTV 

middlewares for terrestrial digital TV has such native support. That situation can be 

mainly explained due to cost and hardware restrictions. Indeed, we have now a 

situation in which there are many TV sets equipped with 3D displays, but those TV 

sets are not able to natively render synthetic 3D objects. Since we want to allow the 

development of stereoscopic multimedia presentation to execute in current CSV-

based delivery chains, one important requirement of our proposal is: 

 

Req. 1. The solution must be backward-compatible with 2D-only language 

players. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       39 

 

  

Even if it is possible to render 3D objects natively by the language player, 

rendering high-quality photorealistic 3D media content at interactive rates is still a 

challenge today. Videos and images, however, are photorealistic and simple to 

handle at the client side. Moreover, CSV-based video and images also support 

photorealistic stereoscopic content. Therefore, another requirement is: 

 

Req. 2. The solution must support the use of CSV-based media objects, 

which can provide photorealistic stereoscopic content, in composing 

multimedia presentations. 

 

Current available S3D displays support the presentation of the main 3DV 

codified in one of the frame-compatible approaches for CSV. Thus, another 

requirement is: 

 

Req. 3. The solution must produce CSV-based multimedia presentations 

that can be displayed in current available S3D displays. 

 

Whereas the backward-compatibility requirement does not allow for 

supporting the full-range of functionality provided by natively supported 3D APIs, 

some interesting stereoscopic effects should be allowed in 2D-only media objects. 

For instance, it must be possible to spatially organize 2D-only content in a layered-

like user interface (see Figure 5). Thus, still another requirement is: 

 

Req. 4. The solution must allow multimedia authors to associate depth 

information to 2D-only media objects. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       40 

 

  

 

Figure 5 Example of a 2.5D user interface. Source: SeeSpace 

(http://inair.tv). 

Most multimedia languages embed a scripting language to extend its domain 

specific scope. In addition, some of them also provide canvas-like drawing APIs 

that allow authors to create complex animations at the client-side—that is the case 

of HTML5 Canvas (CABANIER et al., 2015) and of NCLua (SOARES; 

MORENO; SANT’ANNA, 2009) APIs. The drawing results are treated in the 

multimedia application as a media component. Thus, another requirement is: 

 

Req. 5. The solution must support CSV-based script (animations) media 

content. 

 

Different viewing conditions induce different depth perceptions (see 

Section A.4 for details). For instance, stereoscopic content optimized for a standard 

30-foot cinema screen will look completely different on a TV or on a handheld 3D 

display. Hence, controlling and adapting depth perception to the viewing conditions 

is of central importance to the widespread adoption of S3D (SUN; HOLLIMAN, 

2009). Depth perception and side effects of stereoscopic displays also vary vastly 

among individual users. Individual viewers may also have different viewing 

preferences (LANG et al., 2010). Therefore, it is important to allow users to adapt 

the depth information based on their own preferences, leading to a new requirement: 

 

Req. 6. The solution must support adaptation to different viewing conditions 

and user preferences. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       41 

 

  

As previously shown in subjective experiments—e.g. (GOLDMANN; LEE; 

EBRAHIMI, 2010)—it is crucial that both the left and right views of a stereoscopic 

3D application are always synchronized. Even small synchronization skews can 

deteriorate the quality of the resulting stereoscopic presentation, annoying users, 

and eventually making the presentation impractical (GOLDMANN; LEE; 

EBRAHIMI, 2010). Finally, another important requirement is: 

 

Req. 7. The solution must guarantee a fine synchronization between the left 

and right views of the resulting stereoscopic multimedia presentation. 

 

With the aim of easing the process of creating stereoscopic multimedia 

presentations and supporting the requirements of this section, the remainder of this 

chapter discusses a set of proposals that can be integrated into current 2D-only 

declarative multimedia languages. 

 

3.3. 
Overview of the Proposed Solution 

This thesis focuses on declarative multimedia applications. However, as 

previously mentioned some scripting supporting is also envisioned. In the scope of 

the thesis, scripting languages may be embedded into the declarative multimedia 

language to allow features that are not in the scope of the declarative multimedia 

model. Therefore, providing abstractions to create CSV-based media content 

through scripting languages is also in the scope of the proposals in this chapter. 

Although the proposals can be used together (as it will become clear during 

the remainder of the text), for the following discussion they are divided into 

declarative and imperative support. 

The declarative support is achieved by using: 

 extensions to 2D-only declarative multimedia languages that allow 

authors to control the depth (and parallax2) of 2D-only media objects, and 

to integrate CSV-based media objects into the presentation. The 

discussion of those extensions is the subject of Section 3.4; and 

                                                 
2 Parallax concepts and the geometry of depth perception on S3D displays are discussed in 

Section A.4. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       42 

 

  

 a document converter that handles the generation of stereoscopic 

multimedia documents. The document converter translates a document 

with the proposed extensions to a new document that uses only the 

primitives supported by the original language player. Section 3.5 

discusses the document converter. 

The imperative support is achieved by: 

 extensions to scripting languages that allow authors to create CSV-based 

media content. Those extensions are the subject of Section 3.6; and 

 a library that can be used by scripting authors to support the previous 

imperative extensions. That library is presented in Section 3.7. 

 

3.4. 
Declarative Support for Stereoscopic Multimedia Presentations 

Declarative support to develop stereoscopic multimedia presentations is 

achieved by properties that can be associated with media objects, or globally 

controlled in the multimedia application. 

The following properties can be attached to 2D-only media objects to allow 

them to be rendered stereoscopically: 

depth: The depth of the media object. This property is a double value in the 

interval [−1.0,1.0]. The depth value must be adapted to the final 

screen parallax based on the maximum and minimum allowed 

parallaxes of the scene. Negative values of depth mean inside of the 

screen (i.e. positive parallaxes), whereas positive values mean 

outside of the screen (i.e. negative parallaxes). This property allows 

for adapting the final parallaxes values to different viewing 

conditions, and should be preferred concerning the parallax 

property. 

parallax: The hardcoded amount of screen parallax of a media object. The 

value of this property must be in pixels or percentages of the screen. 

Its value can be either positive (in which case the object will be 

presented inside the screen) or negative (in which case the object 

will be presented outside of the screen). The parallax property is 

only available with the aim of supporting cases in which the author 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       43 

 

  

has enough information about the viewing environment, and wants 

to hardcode the value of the final parallax. The depth property, 

which allows the adaptation to different viewing conditions, should 

be used when possible to replace the parallax property. 

 

The following properties may be associated with CSV-based media objects 

to inform how the content must be rendered: 

stereoMode: specify that the media object uses one of the supported CSV-

based formats. Possible values are ‘none’, ‘side-by-side’, and ‘top-

bottom’. The default value is ‘none’. 

stereoSwappedLR: specify whether the content in the frame is inverted, i.e., 

whether the right frame comes before the left frame. Possible values 

are ‘true’ and ‘false’. The default value is ‘false’. 

 

Whereas the properties above can be individually attached to each media 

object, some constructions in multimedia languages usually allow grouping media 

properties together (aiming at being reused by more than one media object). This is 

the case of CSS properties or NCL <descriptor> elements. Therefore, the properties 

above may also be associated through these constructions. 

The following properties may be globally controlled to inform how the 

stereoscopic multimedia presentation must be rendered: 

s3d.stereoMode: specifies how the final stereoscopic multimedia 

presentation must be rendered. Possible values are ‘none’, ‘side-by-

side’, and ‘top-bottom’. The default value is ‘none’. 

s3d.stereoSwapLR: specifies whether the outputted stereoscopic multimedia 

presentation must swap left and right views. Possible values are 

‘true’ and ‘false’. The default value is ‘false’. 

s3d.maxNegativeParallax: specifies, in pixels or percentage of the screen, 

the maximum allowed negative screen parallax. The default value is 

“3%”3. 

                                                 
3 This default value is based on the percentage rule (MENDIBURU, 2012), commonly used 

in cinematography, which states that for a comfortable stereoscopic viewing the negative parallax 

should not exceed 2%– 3% of the screen width. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       44 

 

  

s3d.maxPositiveParallax: specifies, in pixels or percentage of the screen, the 

maximum allowed positive screen parallax. The default value is 

“2%”4. 

s3d.resizeContent: specifies whether the media objects must be resized 

based on their depth. Possible values are ‘true’ and ‘false’. The 

default value is ‘false’. 

s3d.minResizeFactor: if s3d.resizeContent property is ‘true’, this property 

is used as the minimum resize factor of a media object. This is 

equivalent to specify that elements with 𝑑𝑒𝑝𝑡ℎ = −1.0 will be 

resized by a factor of s3d.minResizeFactor. The default value is 

1.0. 

s3d.maxResizeFactor: if s3d.resizeContent property is ‘true’, this property 

specifies the maximum resize factor of a media object. This is 

equivalent to specify that elements with 𝑑𝑒𝑝𝑡ℎ = 1.0 will be resized 

by a factor of s3d.maxResizeFactor. The default value is ‘1.0’. 

 

The following code block shows examples of how the extensions can be 

included in different multimedia languages. 

                                                 
4 As for the positive parallax, this default value is also based on the rule commonly used in 

cinematography, which states that for comfortable stereoscopic viewing the positive parallax should 

not exceed 1%– 2% of the screen width. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       45 

 

  

... 

<div style="depth: 0.5;"> 

  This is a text "floating out of the screen". 

</div> 

... 

(a) 

 

<smil ...> 

  <head> 

     ... 

    <layout> 

        <root-layout width="1920" height="1080"  

                     s3d:stereoMode="side-by-side" 

                     s3d:maxPositiveParallax="20%" 

                     s3d:maxNegativeParallax="30%"/> 

        <region xml:id="rgFloating" width="200" height="200 

                depth="0.5"/> 

        ... 

    </layout> 

  </head> 

  <body> 

    ... 

    <text region="rgFloating" src="text.html" dur="10s" /> 

    ... 

  </body> 

</smil> 

 (b) 

 

<ncl ...> 

  <body> 

    ... 

    <media id="video1" src="text.html"> 

      <property name="width" value="50%"/> 

      <property name="height" value="50%"/> 

      <property name="depth" value="1.0"/> 

    </media> 

    ... 

  </body> 

</ncl> 

(c) 

Listing 1 Depth-property association in different multimedia languages: 

(a) HTML/CSS; (b) SMIL; (c) NCL. 

 

3.5. 
Stereoscopic Multimedia Document Converter 

The language player can natively implement the support to the extensions 

defined in Section 3.4. This is interesting, since it can provide various sorts of 

optimizations. However, to satisfy Req. 1, an additional approach is assumed. In it, 

a converter is responsible for translating the multimedia document, using the 

extensions proposed, to a stereoscopic version using only the original 2D language 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       46 

 

  

primitives. The translation process can run at the client-side or at the server-side. In 

the latter, the server must convert the multimedia application to its stereoscopic 

version before sending it to the client. 

The process to convert a multimedia document to its stereoscopic version, 

depicted in Figure 6, consists of three main steps: media cloning, layout adjustment, 

and behavior cloning. 

 

 

Figure 6 The three steps of the Stereoscopic Multimedia Document 

Converter. 

The media cloning step focuses on what will be presented. In this phase, the 

processor duplicates 2D media objects that compose the original multimedia 

document and that have some graphical representation. Each new duplicated object 

will represent the left and right views of the original object in the resulting 

stereoscopic application. In addition, this step must also handle objects that have a 

native CSV-based codification and that can be part of the stereoscopic multimedia 

presentation. 

The layout adjustment step determines, statically, where and how the media 

objects duplicated in the previous phase will be initially presented. In defining the 

initial presentation position of media objects, the processor can introduce parallaxes 

between the object’s position in the left and right views. Such a parallax is what 

induces binocular disparity and allows the brain to interpret the 3D depth 

information during a stereoscopic multimedia presentation (see Section A.2.1). 

Multimedia authors can provide the parallax values or the high-level depth property 

for each media object, by using the extensions presented in Section 3.4. 

The behavior cloning step focuses on the dynamic behavior of the multimedia 

presentation, and includes when the media objects appear, disappear, and when their 

properties change during presentation. In this step, the processor must correctly 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       47 

 

  

duplicate the behavior of the original application into an equivalent behavior 

affecting both the left and right views of the stereoscopic application. Moreover, 

the processor must guarantee that dynamic (run-time) changes on any view are 

replicated on the other counterpart. 

Next subsections detail each of those steps. As an example of the conversion 

process, a tool named NCLSC (NCL Stereo Converter) was implemented to convert 

NCL applications for S3D presentations. The details of the conversion process are 

discussed focused on the NCL language, but it can be extended to other multimedia 

document models as well. A brief discussion on how the conversion can be adapted 

to SMIL and HTML languages is also presented. 

 

3.5.1. 
Media Cloning 

The media cloning step must guarantee that each graphical element in the 

original multimedia document produces two representations in the final 

stereoscopic document: one for the left view and the other for the right view. In 

addition, media objects that are natively codified as one of the frame-compatible 

CSV-based approaches must be supported. Their left frame must be on the left side 

of the stereoscopic multimedia; and their right frame on the right side. 

In NCL (SOARES; LIMA, 2013), media objects are defined via <media> 

elements. Thus, in the media cloning phase, the converter identifies and duplicates 

every <media> element of the input document that has a graphical 

representation (e.g. images, videos, animations etc.). Whenever duplicating a 

<media> element, the converter must also duplicate its child elements (<property> 

and <area> elements). To maintain the resulting document valid, the id attribute 

of each cloned <media> element is updated to be unique in the document. 

In NCL, a <media id=“A”> element refers to its media content via its src 

attribute, which defines the content URI (Uniform Resource Identifier). If the URI 

scheme is equal to “ncl-mirror” and the specific part of the scheme refers to an 

identifier of another media object, both objects will have the same content, that is, 

they present exactly the same content sample, independently of their starting 

time (SOARES NETO, CARLOS DE SALLES; SOARES; SOUZA, 2010). Since 

NCL players guarantee this behavior, NCLSC uses this feature to solve the problem 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       48 

 

  

of synchronization skew between the left and right views of the same content. In 

other words, to guarantee a frame-based synchronization, for each pair of duplicated 

elements (left and right instances) one element uses the mirror source mechanism 

to refer to the other one, which keeps the same value defined in the original element 

in its src attribute. Notice, however, that, since they are different media objects, 

their properties may have different values. 

To illustrate the process, consider the following NCL code chunk: 

 

<media id="video" src="file:///video.mp4"> 

  <property name="explicitDur" value="50s"/> 

  <area id="a1" begin="10s" end="20s"/> 

</media> 

 

After the media cloning step, the <media> element is replaced by the 

following pair of <media> elements: 

 

<media id="video-L" src="file:///video.mp4"> 

  <property name="explicitDur" value="50s"/> 

  <area id="a1" begin="10s" end="20s"/> 

</media> 

 

<media id="video-R" src="ncl-mirror://video-L"> 

  <property name="explicitDur" value="50s"/> 

  <area id="a1" begin="10s" end="20s"/> 

</media> 

 

In the listing, each new media object represents a view—left, in case of 

video-L, and right, in case of video-R—of the original element in the resulting 

stereoscopic document. 

 

Supporting CSV-based media objects 

In addition to 2D-only media objects (annotated with depth information) 

some media objects codified as CSV-based formats—e.g. S3D videos, images, or 

script-based animations—may be part of the multimedia application. An example 

of such object in an NCL document is shown in what follows. 

 

<media id="cube" src="cube.mp4"> 

  <property name="stereo-content" value="side-by-side"/> 

  ... 

</media> 

 

In case of CSV-based objects, the media cloning phase must also clone the 

media object, but it should guarantee that each new media object will extract from 

the original element only the associated view. This is done through the element 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       49 

 

  

<area> with the coords attribute. <area> elements allows for defining spatial and 

temporal segments of content, named anchors in NCL. In the previous case, the 

output of the media cloning step is: 

 

<media id="cube-L" src="cube.mp4"> 

  <area name="cube-L-side" coords="0,0,50%,100%"/> 

  ... 

</media> 

 

 

<media id="cube-R" src="ncl-mirror://cube-L"> 

  <area name="cube-R-side" coords="50%,0,50%,100%"/> 

  ... 

</media> 

 

 

The order of values in the coords attribute is “left-x”, “top-y”, “right-x”, and 

“bottom-y”. By using the above approach, the links controlling the presentation of 

the original media, must now bind to each the specific <area>s, informing that only 

that spatial area must be presented. 

An example of CSV-based media objects are those imperative objects 

developed using scripting languages (e.g. NCLua media objects using the 

imperative extensions of Section 3.6). When being used to compose a multimedia 

application, these objects work as any other CSV-based object. The only difference 

is that the script code itself is responsible for generating the left and right views that 

compose the graphical result of the CSV-based media object. 

In case the stereo-inverted property is set to “true”, the previous definitions 

of <area> elements should be swapped between the left and right element views. 

 

3.5.2. 
Layout Adjustment 

In the layout adjustment step, the conversion process replaces the properties 

of media objects duplicated in the media cloning step that specify their initial 

positioning and dimension. 

In an NCL document, initial placement and dimension of objects are defined 

either by <region>, <descriptor> or <property> elements. For simplicity, in the 

remainder of the layout adjustment discussion, the side-by-side output format is 

assumed. However, the derived equations are easily adaptable to other similar 

formats (the top-bottom is also supported by NCLSC). 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       50 

 

  

Assuming the side-by-side output format, for each cloned media object, the 

converter updates the values of three properties: left, right, and width. The 

left property specifies the distance between the left margin of the screen and the 

left margin of the object being presented. In NCL, this value can be either 

absolute (e.g., 10px), or relative (e.g., 10%) to the screen width. 

As an example, let 𝑙𝑒𝑓𝑡(𝑥) be the left property value of a media object 𝑥, 

defined as percentages (%) of the screen width. The corresponding left and right-

view instance values in the resulting document, 𝑙𝑒𝑓𝑡(𝑥𝑙) and 𝑙𝑒𝑓𝑡(𝑥𝑟) are given, 

respectively, by (see Figure 7): 

 

 𝑙𝑒𝑓𝑡(𝑥𝑙) =
𝑙𝑒𝑓𝑡(𝑥)

2
    and  𝑙𝑒𝑓𝑡(𝑥𝑟) =  

𝑙𝑒𝑓𝑡(𝑥)

2
+ 50% +  𝛿(𝑥) (1) 

 

where 𝛿(𝑥) is the parallax (also given as a percentage of the screen width) between 

the left and right-view instances of the resulting elements in the output document. 

As previously mentioned, the parallax value can be explicitly provided by authors 

through the namesake property or evaluated from the depth property. The 

calculation of the final parallax based on the depth property is discussed in 

Section 3.5.2.1. 

 

 

Figure 7 Spatial properties in a stereoscopic multimedia application for 

the side-by-side output format. 

The equations to compute the resulting left and right-view values for the 

right property and for the cases in which the property values are given in pixels 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       51 

 

  

are similar. The equations are similar to the ones used by the top-bottom output 

format, as well. However, the three properties that must be updated are: top, 

bottom, and height. 

To illustrate the process performed by NCLSC in this phase, consider the 

<media> element in the code chunk of Section 3.1 with the additional spatial 

properties and the object’s depth parameter defined by NCL <property> elements: 

 

<media id="video" src="file:///video.mp4"> 

  <area id="a1" begin="10s" end="20s"/> 

  <property name="explicitDur" value="50s"/> 

 

  <property name="depth" value="1"/> 

  <property name="left" value="10%"/> 

  <property name="width" value="80%"/> 

</media> 

 

Assuming that the maximum allowed negative screen parallax is 3%, after 

processing the media cloning and layout adjustment steps, the following pair of 

<media> elements replaces the original one: 

 

<media id="video-L" src="file:///video.mp4"> 

  <area id="a1-L" begin="10s" end="20s"/> 

  <property name="explicitDur" value="50s"/> 

 

  <property name="depth" value="1"/> 

  <property name="left" value="5%"/> 

  <property name="width" value="40%"/> 

</media> 

 

<media id="video-R" src="mirror://video-L"> 

  <area id="a1-R" begin="10s" end="20s"/> 

  <property name="explicitDur" value="50s"/> 

 

  <property name="depth" value="1"/> 

  <property name="left" value="52%"/> 

  <property name="width" value="40%"/> 

</media> 

 

The anchor defined by the <area> element is not redefined, except its id 

attribute value, because it is not a spatial anchor. The depth property is still present 

in the final stereoscopic document because its value can be changed during the 

document presentation, as discussed in Subsection 3.5.3. The final parallax value 

calculation is discussed in what follows. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       52 

 

  

3.5.2.1. 
From depth property to screen parallax 

The final screen parallax value 𝛿(𝑥) for a media object 𝑥 is obtained from the 

depth parameter 𝑑𝑒𝑝𝑡ℎ(𝑥), as follows: 

 

 𝛿(𝑥) = {
−(𝑠 × 𝑑𝑒𝑝𝑡ℎ(𝑥) × 𝑚𝑎𝑥𝜌+), 𝑖𝑓 𝑑𝑒𝑝𝑡ℎ ≥ 0

−(𝑠 × 𝑑𝑒𝑝𝑡ℎ(𝑥)  × 𝑚𝑎𝑥𝜌−),  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2) 

 

in which depth(x) is the current value of the x’s depth property, a double value 

in the interval [−1.0,1.0]; 𝑠 is a viewer-supplied scale factor in the 

interval [0.0,1.0]; 𝑚𝑎𝑥𝛿+ is the maximum positive disparity allowed by the 

display; and 𝑚𝑎𝑥𝛿− is its maximum negative disparity (both 𝑚𝑎𝑥𝛿+ and 𝑚𝑎𝑥𝛿− 

are given as a percentage of the screen width). The negative sign at the front of the 

terms is required because positive depths must produce negative 

parallaxes (resulting in objects in front of the screen), whereas negative depths must 

produce positive parallaxes (objects inside of the screen). The final depth 

perception based on the parallaxes presented to the user can be obtained as 

discussed in Section A.4. 

The 𝑚𝑎𝑥𝛿+ and 𝑚𝑎𝑥𝛿− variables denote the maximum positive and negative 

disparities that still allow for a good QoE using a specific display, which is usually 

called the stereoscopic-box for a S3D display. 

The previous calculation allows NCLSC to adapt the resulting stereoscopic 

application to different display geometries, viewer distances, and user preferences. 

The 𝑠 scale factor is a user-supplied parameter that allows end users, in line with 

their preferences, to adjust the final parallax. The factor can be modified at any time 

during the application execution. This parameter allows end users to have some 

degree of control over their depth perception, which also contributes to the overall 

QoE. 

If authors need (or want) to use a fixed parallax settings, they still can do it 

by hardcoding the parallax property. In the previous example, it is sufficient to 

include the <property> element with attribute name equals to “parallax” and its 

corresponding value (in pixels or percentages of screen). In such a case, it is 

recommended to choose a fixed parallax value that works reasonably well across a 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       53 

 

  

large range of display sizes and viewing distances. An example of such rule-of-

thumb is the percentage rule (MENDIBURU, 2012), commonly used in 

cinematography, which states that: (i) negative parallax should not exceed 2%– 3% 

of the screen width; and (ii) positive parallax should not exceed 1%– 2% of the 

screen width. 

 

3.5.3. 
Behavior Cloning 

The behavior cloning step is responsible for replicating the behavior of each 

original media object onto that of the resulting left and right instances. Such a 

replication is directly related to the temporal model used by the multimedia 

language. 

In NCL, the application behavior is defined by causal relationships (mainly 

specified by <link> elements). NCL is an event-oriented language. Occurrences of 

events trigger actions that cause the occurrences of other events. NCL has three 

types of events: presentation of a set of information units (an anchor) of a media 

object; selection of an anchor being presented; and attribution of a value to an 

object’s property. More precisely, the onBegin, onEnd, onPause, onResume, 

or onAbort conditions for any event type may cause the start, stop, pause, 

resume, or abort actions for other (or the same) events. Link conditions and 

actions are associated with media objects through <bind> elements, defined within 

a parent <link>. 

As an example of an NCL link, consider the following code block: 

 

<link id="orig-link" xconnector="onBeginStop"> 

  <bind role="onBegin" component="x"/> 

  <bind role="stop" component="y"/> 

</link> 

 

The above link establishes that when the media object 𝑥 starts its presentation, 

the presentation of media object 𝑦 must be stopped. 

NCL behavior is also guided by content and presentation adaptations, 

represented by <switch> and <descriptorSwitch> elements, respectively. Because 

these elements are “syntactic sugars” to more complex structures of  

<link> elements (LIMA; SOARES, 2013), the remainder of this section details only 

how NCLSC handles <link> conversions. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       54 

 

  

The <link> conversion can be done in at least two ways:  

(i) each original <link> element generates two links with the same 

conditions, but with actions targeting the new <media> elements 

representing the left views and the right views, respectively; or  

(ii) the original link generates only one <link> in which each action is 

duplicated to operate on both views. 

In both cases, if any condition of the original link refers to a <media> element 

that has been duplicated in the media cloning phase, in the produced link (or links), 

the condition must refer to the new left view instance. 

As an example, take the link orig-link, depicted in the previous code 

block. Assuming that a media 𝑥 has been duplicated in the media cloning phase, if 

the link update method (i) is applied, the following two links replace the orig-

link element: 

 

<link id="orig-link-L" xconnector="onBeginStop"> 

  <bind role="onBegin" component="x-L"/> 

  <bind role="stop" component="y-L"/> 

</link> 

 

<link id="orig-link-R" xconnector="onBeginStop"> 

  <bind role="onBegin" component="x-L"/> 

  <bind role="stop" component="y-R"/> 

</link> 

 

Alternatively, if the link update method (ii) is applied to orig-link, the 

following is produced as output: 

 

<link id="orig-link" xconnector="onBeginStop"> 

  <bind role="onBegin" component="x-L"/> 

  <bind role="stop" component="y-L"/> 

  <bind role="stop" component="y-R"/> 

</link> 

 

The synchronous hypothesis assumed by some NCL players (SOARES et al., 

2013) states that the time between the application of an action and the onset of its 

effect is considered zero. If that hypothesis can be assumed, the two ways for 

converting a link produce the same effect on the QoE of produced stereoscopic 

applications. However, if the synchronous hypothesis cannot be assumed, which 

alternative leads to a greater delay between the action’s effects on the two view 

instances depends on the language player implementation. Although the media 

cloning step guarantees a synchronized presentation of the two media views when 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       55 

 

  

they are both on display, it cannot ensure that the two media views start at the same 

time. 

Currently, NCLSC is able to use both link conversion approaches, (i) and (ii), 

and the authors may choose which one guarantees that a particular NCL player 

implementation will execute both actions (in the right and left-instances) as close 

as possible to each other. By default, NCLSC employs the first approach, since this 

is the best alternative when using the ITU-T NCL player reference 

implementation5 (Subsection 3.8.2 brings experimental results supporting that 

decision). 

In addition, if the original <bind> element specifies the assignment of a value 

of a spatial property of the original <media> element, such change must be 

replicated to the left and right view instances. As aforementioned, properties are 

specified through the <property> element, and spatial properties include left, 

right, top, bottom, width, height, and depth. The changes in the values 

of those properties must be in agreement with equations in Subsection 3.5.2.1. 

However, sometimes, the spatial property values cannot be computed statically. To 

calculate the values at run-time, NCLSC redirects any attempt to change the 

positioning properties to an NCLua script node. This script computes the final 

positioning property for the left and right view instances and redirects these changes 

to the corresponding target view instances. 

Figure 8 shows the conversion process for dynamic changes in spatial 

properties and how the original <link> is changed to use the NCLua script as a 

proxy to change the positioning properties. In Figure 8, the original 

<link> (orig_link) changes the spatial properties of a media 

object (main_video) when this media object begins its presentation. After the 

behavior cloning step, the original link (orig_link) is converted into three links: 

one (link_a) that sets the desired values to the NCLua script proxy, instead of 

directly changing the properties of the main_video object; and two 

others (link_b and link_c) that redirect the new values calculated by the 

NCLua to the left and right views. 

 

                                                 
5 Available at http://www.ginga.org.br 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       56 

 

  

 

Figure 8 NCLua script controlling a positioning property. 

 

3.5.4. 
Implementation and Usage 

NCLSC is implemented as a Lua script that can be used as both a standalone 

application and an embedded NCLua media object that can modify the application 

in which it is inserted. 

The standalone version of NCLSC can be used at the server-side or the client-

side. For example, in IPTV or hybrid broadcast/broadband DTV systems, the 

conversion process can be performed at the server side before sending the requested 

application to the client. In this case, when requesting an application, the client must 

inform the display screen size, the optimal viewer distance, and the scale factor, so 

that the proper parallax parameter could be calculated. 

Applications transmitted by broadcast (e.g. those transmitted in terrestrial 

digital TV systems), cannot be converted at the server side, because they target 

clients with different characteristics and needs. In this case, there are two 

possibilities. First, NCLSC can be embedded into the language player; the language 

player is then responsible for recognizing the depth/parallax properties of the 

received application and converting the application to a new stereoscopic version, 

if an S3D display is available. Second, the application transmitted by broadcast can 

be a wrapper application embedding NCLSC, implemented as an NCLua media 

object, as shown in the following code chunk: 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       57 

 

  

 

<body id="wrapper"> 

  <port id="entry" component="nclsc"/> 

   <property name="url" value="original-2d.ncl"/> 

  </media> 

</body> 

 

In this case, the original document is passed as a parameter to NCLSC using 

the <property> element. When the application starts, NCLSC starts (see <port> 

element), it produces the stereoscopic multimedia document, based on the 

“original-2d.ncl” document and adds this new application into the wrapper 

document. Finally, NCLSC starts the new stereoscopic multimedia presentation. 

 

3.5.5. 
Other declarative multimedia languages 

Up to now, the stereoscopic conversion has been mainly presented in the 

scope of the NCL language. However, the proposals can be adapted to other 2D-

only multimedia language as well. Clearly, some adaptation to the model of those 

languages may be needed. A brief discussion on how the conversion process can be 

adapted to SMIL and HTML is presented in what follows. 

In SMIL, the media cloning step should focus mainly on duplicating the 

<ref>, <animation>, <img>, <text>, <textstream>, and <video> elements. As the 

temporal specification of SMIL is defined in the document structure, a simple way 

to specify that both the left- and right-side media objects will play during the same 

time is replacing the original media element by a <par> container with the two new 

media objects (representing the left and right side of the original media) inside that 

container. Unfortunately, that approach does not necessarily guarantee a frame-

based synchronization between the elements synchronized. The frame 

synchronization skew is dependent on the SMIL player itself. Some control on the 

synchronization between two cloned objects can be achieved using the 

syncBehavior, syncTolerance, and syncMaster attributes. Concerning the support 

for CSV-based media elements in the stereoscopic multimedia presentation, the 

panZoom property may be used. The layout adjustment step should focus mainly 

on the <layout> and <region> elements of the language, with features similar to the 

ones of NCL <region> element. Moreover, dynamic changes in properties and 

animations should also be duplicated. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       58 

 

  

In HTML, some of the elements that define graphical content are <div>, 

<canvas>, <img>, <video>, etc. Therefore, when converting an HTML document 

to its stereoscopic version, an instantiation of the stereoscopic conversion process 

should duplicate those elements. Since the HTML structure itself also defines the 

positioning of the graphical elements, it may be interesting to clone the elements 

into two different trees that completely emulate the two views of the document. 

Moreover, the layout adjustment step should focus also on updating the CSS 

elements and rules in order to correctly position the elements. 

HTML itself does not provide behavior (temporal) specification. Thus, 

authors need to use imperative JavaScript code (or CSS animations) to control the 

behavior of a multimedia application written in HTML. In order to keep the same 

behavior on both sides of an HTML stereoscopic application, the process of 

converting an HTML/JavaScript code must also guarantee that such changes are 

replicated. Different from NCL, there is no mirroring scheme natively supported by 

HTML language features. Thus, avoiding the synchronization skews between two 

dynamic media elements (e.g. two <video> elements) is not straightforward. Still, 

it is possible to implement such a feature using JavaScript and the <canvas> 

element, which is provided by the HTML5 specification. In such approach, the 

conversion process should replace the original dynamic media element (e.g. 

<video>) with two <canvas> elements in the output document. A JavaScript code 

should then be responsible for getting the original frames cropping them and 

drawing them synchronously in each <canvas> element. CSV-based media support 

could work similarly, with the JavaScript code cropping and drawing the frames in 

their specific <canvas> elements. 

 

3.6. 
Imperative Support for Stereoscopic Media Content 

Imperative scripting languages can be used to control—e.g. using a DOM-

like API (HÉGARET et al., 2004)—the properties described in Section 3.4. In 

addition, some script languages provide a canvas-like API that allows scripting 

languages to draw on a 2D surface. The drawing results can then be integrated into 

the overall multimedia presentations. This is the case of 

HTML5/JavaScript (CABANIER et al., 2015) and NCLua (SOARES; MORENO; 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       59 

 

  

SANT’ANNA, 2009) canvas APIs. HTML provides a specific graphical 

element (<canvas>) in which JavaScript code can draw. The integration of NCLua 

canvas into NCL applications is done like any other media object through the 

<media> element. 

Canvas APIs usually provide objects, methods, and properties to draw and 

manipulate graphics on a canvas drawing surface. They are commonly based on a 

drawing context that has a state (a set of properties) and methods. The methods can 

be used to change the context state (change the values of the properties) or for 

drawing on the surface. The state usually has influence on how the objects are 

drawn. To allow authors to control how the stereoscopic views are drawn on 2D 

canvas surfaces, the following method are proposed (which are added to the canvas 

context and control its states): 

ctx:attrStereoMode(stereoMode: string) gets or sets the output stereo 

mode of the canvas element. Currently, the two supported 

stereoscopic modes are ‘side-by-side’ (or 'SbS') and ‘top-and-

bottom’ (or 'TaB'). The default value is ‘side-by-side’. 

ctx:attrStereoSwap(swap: boolean) gets or sets a parameter to specify 

whether the left and right pair should be swapped. The default value 

is ‘false’. 

ctx:attrParallax(parallax: number) gets or sets the current parallax (offset) 

used by the drawing methods. The default value is ‘0’. 

ctx:attrDepth(depth: number) gets or sets the depth property. Depth is a 

flexible way to specify the ctx:attrParallax, which allows the final 

offset to be adapted to different display sizes. Depth must be a 

double value in the  [−1.0,1.0] interval. The default value is ‘0’. 

ctx:attrMaxParallax(maxNegParallax: number, maxPositiveParalax: 

number) gets or sets the maximum negative and positive parallaxes 

properties of a canvas context. Those properties are used to calculate 

the final offset based on the depth property. Maximum negative 

parallax must be in pixels or percentage of the canvas width. The 

default value is “3%”. Maximum positive parallax must be a value 

in pixels or percentage of the canvas width. The default value is 

“2%”. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       60 

 

  

ctx.attrStereoResizeContent: specifies whether the objects must be resized 

based on their depth or not. Possible values are ‘true’ and ‘false’. 

The default value is ‘false’. 

ctx.attrStereoResizeFactor(minResizeFactor: number, 

maxResizeFactor: number): if ctx.attrStereoResizeContent 

property is ‘true’, this compound property is used as the minimum 

and maximum resize factor of a media object. This is equivalent to 

specify that elements with 𝑑𝑒𝑝𝑡ℎ = −1.0 will be resized by a factor 

of minResizeFactor and elements with 𝑑𝑒𝑝𝑡ℎ = 1.0 will be resized 

by a factor of maxResizeFactor. The other depths will be linearly 

resized between those values. The default value of 

minResizeFactor and maxResizeFactor is 1.0. 

 

3.7. 
Imperative Support Implementation 

Aiming at providing a unified framework to support declarative and 

imperative abstractions, the above extensions were integrated into NCLua in a 

library named NCLuaCanvaS3D. “NCLua API” (SANT’ANNA; CERQUEIRA; 

SOARES, 2008) is the set of Lua extensions that provides integration between Lua 

scripts and NCL documents. NCLua objects are media objects developed using the 

NCLua APIs that are embedded into NCL documents. The NCLua API is composed 

of the following modules: event, canvas, persistent, settings, and security. From 

those modules, NCLua canvas is the one of special interest in developing CSV-

based media content. “NCLua canvas” is the API that allows NCLua objects to 

perform graphics operations. They include drawing primitives such as lines, circles, 

rectangles, etc. 

NCLuaCanvaS3D is a wrapper on the NCLua canvas module that eases the 

development of CSV-based media content. NCLuaCanvaS3D allows NCLua 

programmers to use the default NCLua canvas API and to control how those 

primitives are rendered into a CSV-based canvas. The graphical result of the canvas 

rendering is codified as one of the frame-compatible CSV formats (side-by-side and 

top-bottom are currently supported). 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       61 

 

  

An NCLua script that wants to generate CSV-based media content just need 

to include the NCLuaCanvaS3D wrapper as follows: 

 

local canvas = require "canvas_s3d" 

 

The code overwrites the local canvas module with the NCLuaCanvaS3D 

library. From now on, NCLua authors uses the drawing primitives as 

usual (following the standard NCLua canvas API). However, the methods called by 

the script are redirected to NCLuaCanvaS3D, which is responsible for redirecting 

the drawing primitives to the two underlying canvas: the left and right canvas. 

In addition to the standard NCLua APIs, NCLuaCanvaS3D also implements 

the methods discussed in Section 3.6. The authors can control the 

depth (canvas:attrDepth(…)) or the parallax (canvas:attrParallax(…)) of 

individual objects that are drawn on the stereoscopic canvas. It is also possible to 

control how the canvas is drawn using the (canvas:attrStereoMode(..)). The 

next code example shows a very simple case of drawing a black circle that pops out 

of the screen using NCLuaCanvaS3D API. 

local canvas = require 'canvas_s3d' 

... 

canvas:attrStereoMode('side-by-side') 

... 

canvas:attrDepth(1.0) 

canvas:attrColor(255, 0, 0, 255) 

canvas:drawEllipse('fill', xc, yc, len, len) 

... 

 

Figure 9 shows an example of a dynamically generated content using 

NCLuaCanvaS3D. 

 

Figure 9 Dynamically generated animation (using imperative 

stereoscopic 3D canvas API) that presents moving circles inside and outside of 

the screen. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       62 

 

  

The following code shows how to integrate the NCLua script content of 

Figure 9 into a parent NCL document. 

 

<media id="cube" src="circles3d.lua"> 

  <property name="stereo-content" value="side-by-side"/> 

  ... 

</media> 

 

In embedding CSV-based content based on the NCLuaCanvaS3D library, the 

stereo-content property can be omitted. The NCLuaCanvaS3D library can 

automatically notifies changes on this property to the NCL parent, without the user 

being aware of it. 

 

3.8. 
Experimental Results 

As previously mentioned, the proposals of this chapter led to two practical 

implementations: NCLSC and NCLuaCanvaS3D. This section presents 

experimental results based on those implementations. First, it presents some 

applications developed using NCLSC and NCLuaCanvaS3D. Second, their 

performances are analyzed. 

 

3.8.1. 
Applications 

NCLSC and NCLuaCanvaS3D can be used either individually or together, to 

develop stereoscopic multimedia applications. Applications developed using those 

implementations are ready to run in current NCL players (without any change on 

the player). Since NCL is the declarative standard for developing interactive 

services for ISDB-T (Integrated Services Digital Broadcasting—Terrestrial), 

applications using the provided implementations can be seamlessly integrated into 

ISDB-T delivery chains. This section presents three simple stereoscopic multimedia 

applications developed using the proposed approach. The aim is to show examples 

of how the real depth information can be used to catch user attentions, spatially 

structure user interfaces, or provide realistic representation of media objects. The 

applications discussed can run, without any change, in current NCL players (and be 

transmitted ISDB-T chains). 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       63 

 

  

Figure 10 shows an advertisement application composed of a 2D-only 

video (the main broadcasted video) and two additional media objects annotated 

with depth, popping-out of the screen. The one on the left of the figure is a 2D-only 

media object annotated with depth. The one on the right side is a CSV-based 

animation (based on NCLuaCanvaS3D) of a beer brand. In the application, the 

depth information is used as a way to call the users’ attention. The use of 2D-only 

video with advertisement media popping out of the screen can help to reduce the 

user’s eye fatigue while maximizing the advertisement impact (JUNG et al., 2008). 

 

 

(a) 

 

(b) 

Figure 10 Example of an advertisement application using stereoscopic 

effects: (a) schematic view; (b) side-by-side format. 

The application shown in Figure 11 is an Electronic Programming 

Guide (EPG) using real depth as a metaphor to organize the TV program schedule 

in space. In the figure, the real depth information is used to organize the schedule 

of the different channels. Each channel is presented on a different distance from the 

user, providing a layered-like interface. The user can navigate between the 

channels, bringing them closer or farther away. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       64 

 

  

 

(a) 

 

(b) 

Figure 11 Example of an EPG application using the real depth 

information to organize elements in the user interface: (a) schematic view; 

(b) side-by-side. 

Figure 12 is a distributed multimedia application that integrates companion 

screens (a feature supported by NCL) with the main stereoscopic multimedia 

application. Secondary devices may capture stereoscopic objects (CSV-based) 

popping out of the screen. When capturing those objects, additional information is 

displayed on the secondary device. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       65 

 

  

 

(a) 

 

(b) 

Figure 12 Example of a stereoscopic multimedia application integrated 

with a secondary device: (a) schematic view; (b) side-by-side format. 

 

3.8.2. 
Performance Analysis 

This section analyzes the performance of NCLSC and NCLuaCanvaS3D. 

First, NCLSC is analyzed concerning the asynchrony that can arise when running 

stereoscopic multimedia applications. To analyze NCLuaCanvaS3D, this section 

focuses on its rendering frame rates. Measurements are performed using the ITU-T 

reference implementation of the NCL player, running  in a computer with an Intel 

Core i7 processor and 8GB of RAM. It is worth noting that whereas this is not a 

real world low-end platform, it might bring us some insights on the possibilities of 

using the proposed approach. 

In stereoscopic multimedia applications generated by NCLSC, there is no 

skew between the left- and right-side media objects when they are both on the 

screen. Such a frame-by-frame synchronization is guaranteed due to the mirroring 

scheme of NCL. However, in particular NCL player implementations the results 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       66 

 

  

coming from the two equivalent actions on the left- and right-side media objects 

may have some skew. For instance, the left-side media object may be on the screen 

while its right-side counterpart may not be shown yet. To test the skews among 

actions, an application that presents two alternating media objects was used. Each 

time a media object starts, it stays for 2 seconds on the screen. The total time of the 

application is 60 seconds.  

Figure 13 shows the measurements of the asynchrony between the left- and 

right-side media objects representing the same original media object. The x-axis is 

the total time of the application in milliseconds. The y-axis informs, also in 

milliseconds, for how long the application has been de-synchronized. For instance, 

a point (5000, 10) means that at the time 5s the application suffers 10ms of 

asynchrony. In other words, the measurements show for how long a media object 

representing one side of the application is on the screen while its counterpart is not 

being shown yet. Both link conversion methods, (i) and (ii), discussed in 

Section 3.5.3 were tested. As can be notice, method (i) has produced less 

asynchrony using the ITU-T NCL player. That is the reason why it was chosen as 

the default method. 

 

(a) Links conversion method (i) with images-only media objects. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       67 

 

  

 

(b) Links conversion method (i) with video-only media objects. 

 

 

(c) Links conversion method (ii) with images-only media objects. 

 

(d) Links conversion method (ii) with video-only media objects. 

Figure 13  Asynchrony between left and right side of a stereoscopic multimedia 

application. 

Whereas NCLSC may produce some asynchrony between the left- and right-

views, NCLuaCanvaS3D operates synchronously—i.e., it draws both sides of a 

stereoscopic 3D media content at the same time—and does not suffer from the 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       68 

 

  

aforementioned asynchrony issues. Therefore, to analyze NCLuaCanvaS3D, the 

focus is placed on its performance. Figure 14 shows the rendering frame rates of an 

NCLua applications similar to the one presented in Figure 9, but that draws 

rectangles on the canvas instead. The figure shows the frame rates of the “pure” 

NCLua canvas version of the application and of its stereoscopic version using 

NCLuaCanvaS3D. In the beginning of the curve (until approximately 1000 

rectangles), the performance of the default NCLua canvas and of NCLuaCanvaS3D 

are similar. Such a similarity is explained by the fact that the NCLua 

implementation limits the rendering performance of NCLua objects up to 60fps. As 

expected, the performance of NCLuaCanvaS3D, which draws both the left and right 

views of the presentation, is lower than the performance of the pure NCLua canvas. 

Notice, however, that NCLuaCanvaS3D can provide enough performance to be 

used in real scenarios. According to the provided measurements, it is possible to 

achieve rendering performance above 30fps until approximately 2500 rectangles. 

 

 

Figure 14 Frame rates of a pure NCLua application and its stereoscopic 

version using NCLuaCanvaS3D. 

More interesting than knowing the frame rate of applications using 

NCLuaCanvaS3D, is to measure the overhead of using S3D compared with the pure 

NCLua. Figure 15 shows the ratio between the frame rate of NCLuaCanvaS3D and 

the pure NCLuaCanvas. As can be seen in the figure, in the worst case, the 

performance of NCLuaCanvaS3D is close to 70% of the pure NCLua 

canvas (which only draws one view and cannot achieve stereoscopic viewing). In 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       69 

 

  

the beginning of the curve, the ratio between both cases varies close to 1 due to the 

60fps frame rate limit imposed by Ginga-NCL reference implementation. 

 

 

Figure 15 Relationship between the performance of NCLua and 

NCLuaCanvaS3D. 

 

3.9. 
Discussion 

At this point, some remarks should be made concerning the space and time 

complexity of the stereoscopic multimedia applications, the problems that can 

disturb the end-user QoE, and the limitations of the proposed solution. 

 

3.9.1. 
Space and time complexity 

The processing overhead of the produced stereoscopic applications, in 

comparison with the original one, heavily depends on how a particular language 

player is implemented and for which tasks it is optimized. In particular, the previous 

section has provided measurements related to the ITU-T NCL player. This section 

is more general and presents a complexity analysis of stereoscopic multimedia 

applications produced by NCLSC. 

Beginning by the space complexity of the produced application, consider an 

original document with N media objects, and L links. After the media cloning step, 

the produced stereoscopic application has at most two times more media objects 

than the original one, that is, 2N media objects. This worst-case scenario occurs 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       70 

 

  

when every media object has a graphical representation and needs to be duplicated. 

Moreover, for each duplicated object in this first step, NCLSC can add one NCLua 

script object to control the parallax between the left and right view instances at 

runtime. This processing is also done in the behavior cloning phase. Thus, in the 

worst case, the total number of media nodes in the output document is 3N. 

For each link in the original document that changes a spatial property, the 

behavior cloning step outputs tree links. These links are responsible for redirecting 

changes on spatial properties to the associated NCLua script object and then to the 

left and right view instances (see Figure 8). Therefore, in the worst case, the total 

number of links in the output document is 3L. 

As for the time complexity of running the final stereoscopic application, it 

can be estimated from the number of events generated at runtime that results in 

changes in the application state. In the worst case, the number of events generated 

by the produced stereoscopic application is twice that generated by the original 

application. That is, in the worst case we may end up running two instances of the 

same application. 

 

3.9.2. 
Quality of Experience 

Two main parameters affect the QoE of the stereoscopic multimedia 

applications produced by NCLSC: the parallax between the left and right view 

instances of a same media object; and the synchronization skew between the two 

views. 

The parallaxes among objects is in complete control of the application 

author (who may also allow for some end user customization) who is tasked with 

the handling of depth (or parallax) of media objects. He can control such depth 

information to preserve or improve the QoE. NCLSC only gives him the tools, as 

discussed in Section 3.2.1. As previously mentioned, the authors can use a fixed 

parallax value between the left and right views. That approach is sufficient for 

achieving depth perception on S3D displays. However, some studies (SHIBATA et 

al., 2011) (CHEN, YING et al., 2014, p. 3) have reported that if the parallax value 

is kept fixed while the display size and viewer distance vary, there is a significant 

drop in the user quality of experience (QoE). By using the depth property, NCLSC 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       71 

 

  

allows adaptation to different viewing conditions. Moreover, the end user can also 

customize his experience by controlling the final parallax by using the scale 

factor (discussed in Section 3.5.2.1). 

To keep the views synchronized is more challenging. The left and right view 

instances must begin their presentations at the same time and keep their presentation 

as close as possible of a frame-by-frame synchronization. As previously mentioned, 

when the two representations (left and right) of the same media object are being 

shown on the screen, the frame synchronization is preserved taking advantage of 

the “ncl-mirror” scheme of NCL (see Section 3.1). However, keeping the same 

starting time for the left and right views depends on the NCL player 

implementation. This drawback is mainly due to the NCLSC approach of relying 

as much as possible on the declarative constructions of the declarative language. In 

particular, Section 3.8.2 has provided some measurements of the de-

synchronization that can arise when running NCLSC applications on the ITU-T 

Ginga-NCL reference implementation. Although those experiments are 

application-specific, they provide evidence that it is possible to achieve good QoE 

for stereoscopic multimedia applications generated by NCLSC. According 

to (GOLDMANN; LEE; EBRAHIMI, 2010), a skew below 80ms leads to good 

stereoscopic 3D visual quality, while a skew larger than 200ms annoys the user. 

 

3.9.3. 
Limitations 

As aforementioned, one of the main advantages of using the NCLSC solution 

is that it does not need native S3D support from the language player. Despite that, 

some limitations should be mentioned. 

The use of scripting languages instead of native software support has clearly 

some overhead that can influence the performance of the application. 

Another issue is derived from the fact that NCL applications have no control 

over the pointing device, which is under complete control of the NCL player 

implementation. Thus, NCLSC is not able to duplicate pointers correctly to the left 

and right view instances, providing an S3D view. Even if it could be represented in 

an S3D view, the use of 2D pointers in S3D systems also has ssome major 

drawbacks, such as the position of the cursor in depth and handling of 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       72 

 

  

occlusions (SCHEMALI; EISEMANN, 2014). Whereas this may be considered a 

big issue in PC environments, we consider it a minor one in interactive TV, in which 

the most common interactive device is still the remote control, i.e., no pointer is 

visible. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       73 

 

  

4 
Layered-depth-aware Multimedia Applications 

Some 3DV delivery chains based on conventional stereoscopic video 

representations are already in deployment (e.g., in 3DTV and 3D Cinema). The 

proposals of Chapter 3 allow for extending those chains by providing interactive 

content that is ready to run on currently available hardware and with support of 2D-

only language players. Although CSV-based formats have been standardized and 

used for quite some time, they have some conceptual drawbacks. For instance, 

CSV-based multimedia services are restricted to only one viewpoint, do not support 

movement parallax, and cannot be easily customized to users’ preferences or 

display characteristics (FEHN, 2005). The latter feature is usually required for good 

QoE when watching S3D content. 

An alternative to CSV is to transmit video signals (or textures) and per frame 

depth-maps (FEHN, 2005). One or more stereoscopic videos can then be rendered 

at the client side. That approach allows for customizing the depth perception, 

supporting head motion parallax and multi-view 3D displays. In addition, the use 

of depth information is interesting from the compression point of view, saving 

bandwidth in transmission networks (SMOLIC et al., 2007). 

Following this direction, this chapter considers a depth-based delivery chain 

as a new scenario. Based on such a delivery chain, the chapter extends multimedia 

languages to allow for a seamless integration between synthetic (both 2D and 3D) 

and natural (real) scenes. A graphics architecture supporting the rendering of 

multimedia applications using those extensions is also in the scope of the chapter. 

The architecture is able to compose and generate multiple views for a multimedia 

scene and is implemented using OpenCL, aiming at achieving a real-time (at least 

30 fps) performance. 

Previous work has handled the integration of synthetic 3D media objects into 

multimedia scenes (CESAR; VUORIMAA; VIERINEN, 2006) (AZEVEDO, 

2010) (SOUZA et al., 2010). However, in most of those cases, the 3D media object 

is usually rendered on a 2D surface (window) that is used to compose the 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       74 

 

  

entire (2D) multimedia scene. Stereoscopic and multi-view displays are not in the 

scope of those works. Partial occlusion (such as the one depicted in Figure 16) 

between different media objects is not supported either in those works. 

 

   

Figure 16 Example of a partial occlusion between a 2D+depth video and 

a 3D model. 6 

Using a depth-only approach, such as the one proposed by (LE FEUVRE; 

MATHIEU, 2013), is interesting and can provide the graphical composition we aim 

to support. However, it may suffer from introducing artifacts when rendering 

multiple views for 3D displays. Such effect increases with the distance from the 

virtual views to the original camera position. Additional occlusion layers help to 

minimize those undesired artifacts. The video representation using multiple depth 

layers is the layered-depth video (LDV), which is an extension of the concept of 

layered-depth image (LDI)(SHADE et al., 1998) (Section A.3 brings more details 

on LDI/LDV). The proposals in this chapter consider the possibility of using 

multiple LDV media objects. Moreover, the graphical composition of the various 

objects takes advantage of the layered-depth representation, which allows for 

storing as much occlusion information as possible. 

The remainder of the chapter is organized as follows. Section 4.1 introduces 

the motivating scenario for the proposals in the chapter. Section 4.2 presents an 

overview of the proposed solution. Section 4.3 discusses extensions to multimedia 

languages that can be used in the context of depth-based 3DV delivery chain. 

Section 4.4 presents the graphics architecture based on the LDV concept to support 

the extensions of Section 4.3 and render multiple views of multimedia applications. 

The architecture supports the graphical composition of 2D, 2D+Z, LDV, and 3D, 

                                                 
6 Extracted from “Augmented reality occlusion demo with X3D and Microsoft Kinect”. 

Available at: https://www.youtube.com/watch?v=mHhDUR06PfI. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       75 

 

  

natural and synthetic objects. Section 4.6 brings some experimental results. 

Section 4.7 is reserved for final considerations. 

 

4.1. 
Motivating Scenario 

Figure 17 depicts the 3DV delivery chain scenario. It is similar to the scenario 

defined in Chapter 3, but the main video is based on a depth format instead. In 

particular, 2D+Z or LDV are considered. Similar delivery chains have been studied, 

respectively, by ATTEST (2D+Z) and 3D4YOU projects. MPEG-C Part 3 (ISO, 

2007), one of the results of ATTEST, can be used to synchronously multiplex the 

depth frame  and the main texture frame, being backward compatible with current 

2D-only delivery chains. Another alternative is using video coding algorithms that 

take advantage of the interdependency between the texture and depth data (CHEN, 

YING; VETRO, 2014). 

 

 

Figure 17 Example of an interactive 3DV delivery chain based on 2D+Z. 

In Figure 17, similar to the scenario presented in Chapter 3, multimedia 

applications can be multiplexed in the main transport stream or retrieved from 

another transport mean. The language player is responsible for presenting the 

multimedia application in agreement with the multimedia document specification. 

In the scenario, natural media objects that are part of the multimedia application are 

not restricted to 2D-only objects, but may also be natively represented as 2D+Z or 

LDV. Indeed, the main depth-based 3DV may also be part of the multimedia 

application. Synthetic 3D objects may also be supported. In this case, it is possible 

to extract the texture and depth information after rendering them using standard 

APIs such as OpenGL or DirectX. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       76 

 

  

Unlike the receiver in the scenario of Chapter 3 (a low-end device that does 

not support rendering synthetic 3D objects), this chapter considers high-end digital 

receivers—or interactive high-end terminals as defined by (CESAR; VUORIMAA; 

VIERINEN, 2006). Such receivers can natively render 3D objects at the client 

side—e.g., using DirectX, OpenGL APIs—and may also support GPGPU (General 

Purpose for GPU) programming APIs, such as OpenCL and Cuda. 

Moreover, the scenario discussed in Chapter 3 only targets receivers with 

stereoscopic displays. In addition, the proposal in this chapter must also support 

receivers equipped with multi-view displays. 

 

4.2. 
Overview of the Proposed Solution 

This chapter aims at providing a declarative scene environment to be 

implemented by high-end digital receiver to support the seamless integration of 

various types of media objects. More precisely, the different types of media content 

to be supported are: 

 Natural 2D: the typical 2D-only videos and images. 

 Declarative 2D synthetic: content developed using declarative languages 

and which render a 2D-only surface. Examples of declarative 2D 

synthetic objects are those specified using SVG, HTML, SMIL, or NCL.  

 Imperative 2D synthetic: content developed using imperative languages 

and which render a 2D-only surface. Examples of imperative 2D synthetic 

objects are those developed using NCLua and JavaScript canvas APIs. 

 Natural 3D: videos or images represented in 2D+depth or layered-depth 

representation. 

 Declarative 3D synthetic: content developed through declarative 

languages and which render a layered-depth data (usually, a 2D+depth 

only). This is the case of scenes developed using X3D, VRML, or even 

those using a 2D-only scene plus the declarative extensions provided in 

Subsection 4.3.1. 

 Imperative 3D synthetic: content developed using imperative languages 

and that renders layered-depth data. This is the case of NCLua scripting 

using the API proposed in Section 4.3.2. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       77 

 

  

 

In our proposal, each media object content type has an associated media 

player that is responsible for decoding (in the case of natural) or rendering (in the 

case of synthetic) the media content. The issues addressed in this chapter are how 

to compose (in a per-pixel mode) those media objects, allowing the authors to 

control such a composition, and how to generate multiple views to be presented on 

3D displays. Different from related work, the considered depth information may 

contain multiple layers of textures and depth, i.e., it can be LDI. 

In controlling the integration among the different media types, a “glue 

language” that supports a scene model based on LDI (see Figure 18) must be used. 

One solution would be to design a new language to do so. Instead, an existing 2D 

multimedia language is used as glue language, the NCL language, and extensions 

to support the specification of layered-depth properties of media objects are 

proposed (in Section 4.3). Indeed, any multimedia language (with the extensions 

proposed) could be used. By using NCL, the synchronization features of the 

language can also be used to control the spatial and temporal behavior of the media 

objects. 

 

 

Figure 18 NCL Document as a glue language for 2D, 2D+Z, LDV, and 

3D media objects. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       78 

 

  

 

4.3. 
Layered-depth Extensions 

The multimedia language extensions provided in this chapter, as those 

defined in Chapter 3, can be divided into declarative and imperative ones. The 

declarative extensions are properties to be associated with media objects. 

Imperative extensions aim to be used by imperative scripting languages that provide 

a canvas-like API. 

 

4.3.1. 
Declarative Extensions 

The following properties are associated with media objects to allow 

programmers to define the depth and occlusion information of these objects. The 

layer parameter is an integer that indexes the different layers. The occlusion layer 

values are indexed starting from 1. For 2D-only media, Layer 0 is the content of the 

media itself. 

depth(layer: number) associates a unique depth information to a media 

object layer. The property’s value, in the interval [−1.0, 1.0], 

informs how far the object must appear from viewers when 

rendering on a 3D display. It is like the depth property defined in 

Chapter 3, but multiple depth layers are supported. 

depth is the equivalent short form for depth(0). 

depthMap(layer: number) associates a per-pixel depth information to 

media objects. The value of a property depth(layer) is an URI to a 

gray-scale image or video that must be used to generate the per-pixel 

depth information. 

depthMap is the equivalent short-form for depthMap(0). 

occlusionLayerTexture(layer: number) specifies the occlusion layer 

texture data of media objects. 

depthScale a scale factor to depth and depthMap properties’ values. 

 

All those properties are integrated into NCL through <property> elements, 

children of the <media> element. Since NCL allows to group media objects’ 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       79 

 

  

properties (to be (re)used in different media objects) into descriptors (<descriptor> 

element), the properties can also be associated with descriptor. 

NCL constructions can dynamically control the values of these 

properties (e.g., by using <link> elements), allowing complex animation effects. 

NCL links define spatiotemporal relationships between media objects, thus defining 

the temporal behavior of applications. To exemplify the declarative manipulation 

of 3D effects using NCL, the following source code shows how the depth property 

is associated with a media object, and how to animate this property (during 5s), 

enabling an effect of popping-out an image from the screen: 

 

<ncl> 

... 

<body id ="nclBody"> 

  ... 

  <media id="button" src="media/button.png"> 

    <property name="depth" value="0.0"/> 

  </media> 

  ... 

  <link ...> 

    ... 

    <bind role="set" component="button" interface="depth"> 

      <bindParam name="var" value="1.0"/> 

      <bindParam name="dur" value="5s"/> 

    </ bind> 

  </link> 

  ... 

</body> 

</ncl> 

 

Although it is not assumed that authors of multimedia applications would 

change some system configuration-level properties, such as the number of views, it 

could be interesting to let authors to know system-level information. Thus, the 

following properties may be accessed considering the rendering system: 

ldi.zFar farthest depth plane, which corresponds to the value 0 in depthMap 

or 𝑑𝑒𝑝𝑡ℎ = −1.0. 

ldi.zNear nearest depth plane, which corresponds to the value 255 in the 

depthMap or 𝑑𝑒𝑝𝑡ℎ = 1.0. 

ldi.numViews the number of views that the rendering system produces. 

ldi.baselineDistance the baseline distance between two consecutive 

cameras (or the eye-distance for two views only). 

ldi.viewerDistance the user viewing distance. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       80 

 

  

interleavingMethod informs which method should be used for interleaving 

the final generated views. Possible values include “side-by-side”, 

“top-bottom”, “row”, and “column”. 

 

For keeping the system-level properties, NCL has a special node, named 

settings node, whose properties can be accessed by NCL <link> and <rule> 

elements. 

 

4.3.2. 
Imperative Support to Layered-depth Content 

Similar to the extensions proposed to the declarative languages, imperative 

extensions, which allow to control the depth information in canvas-like APIs, are 

also proposed. The following new methods have been incorporated into NCLua: 

canvas:depth(layer: number)->depth: number: returns the depth 

associated to a layer of the NCLua canvas. The layer parameter is 

an integer. If it is omitted, the first layer is considered, i.e., it is 

equivalent to depth(0). The returned value is a double in the 

interval [−1.0, 1.0]. 

canvas:depth(layer: number, depth: number): sets the depth of a layer of 

the NCLua canvas. The layer parameter is an integer, and depth is a 

double interval [−1.0, 1.0]. If the layer parameter is not used, the 

first layer is considered, i.e., it is equivalent to depth(0). 

canvas:depthMap(layer: number)->depthMap: canvas: returns the 

depthMap canvas associated to a layer of the NCLua canvas. 

canvas:depthMap(layer: number, depth_map: canvas): sets the 

depthMap of a layer of the NCLua canvas. It is possible to create a 

depthMap based on an image by creating a canvas element through 

“depthMap = canvas:new(image_url)”. That canvas may now be 

used as the depthMap information of another canvas. 

canvas:occlusionLayerTexture(layer: number)->texture: canvas: returns 

the canvas object that is currently used as the depthMap of canvas. 

It is possible to change the individual pixels of the depthMap 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       81 

 

  

through the native “canvas:pixel” method. If layer is not passed as 

parameter, the first layer is considered. 

canvas:occlusionLayerTexture(layer: number, texture: canvas): returns 

the canvas object that is currently used as the depthMap of canvas. 

It is possible to change the individual pixels of the depthMap 

through the native “canvas:pixel” method. If layer is not passed as 

parameter, the first layer is considered. 

 

The use of canvas objects for representing depthMap, occlusionLayer, and 

occlusionLayerDepth of other canvas elements is interesting because these 

additional data can be dynamically generated. It also enables authors to load 

external images that represent the depth or occlusion information. 

 

4.4. 
Layered-depth-aware Graphics Architecture 

This section discusses a graphics architecture (schematically shown in Figure 

19) that supports the extensions proposed in Section 4.3 and allows for composing 

2D and 3D media objects, both synthetic and natural. 

 

 

Figure 19 Layered-depth-aware graphics architecture. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       82 

 

  

The process of rendering multiple views of the multimedia scene works as a 

loop. In each step, N views, required by multi-view 3D displays, are rendered. The 

process for one rendering step is discussed in what follows. 

Each media object has its own media player that is responsible for generating 

the texture and, possibly, depth and occlusion information. Synthetic objects must 

be rendered based on their primitives; natural media must be decoded. Each media 

player generates a 2D-only texture, which alternatively can have additional depth 

and occlusion information. In other words, each media player outputs an LDI, 

which is used as input to the media merging step. 

In the media merging step, the layered-depth information of each media 

object that is currently active in the application is received. The component outputs 

a unique LDI structure for the entire scene. Based on the properties associated with 

each media object, the layered-depth composition can scale or add some offset to 

the original depth information of the media objects. 

In the 3D image warping step, the LDI generated by the media merging 

component is received, as well as, the viewing conditions and the camera 

configuration parameters. Based on this information, the component outputs two or 

more views, which can be used by 3D displays. 

As will be discussed further, the 3D warping step may produce some holes in 

the generated views. In comparison to a 3D warping that uses only one video and 

depth, the use of a layered-depth structure solves most of those holes. Even so, some 

holes may still exist in the generated views, and the hole filling component is 

responsible for filling them. 

Finally, the interleaving component is responsible for formatting the 

generated views for 3D displays. Examples of those formats include top-bottom, 

side-by-side, and column and row interleaving. 

Section 4.5 details the implementation of each component of the layered-

depth-aware renderer. 

 

4.5. 
Implementation 

The proposed architecture is implemented in GPGPU using 

OpenCL (MUNSHI, 2012). In particular, the media merging, 3D warping, hole 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       83 

 

  

filling, and interleaving are instantiated as different OpenCL-coded routines (called 

kernels). As an example of the use of the architecture, the implementation is 

currently integrated to the Ginga-NCL reference implementation, allowing the use 

of NCL as the glue language for layered-depth media. The remainder of this section 

details the implementation of each component. 

 

4.5.1. 
Media Merging 

The media merging kernel is responsible for generating an LDI data structure 

that represents the entire scene. As input, it receives the texture(s) and depth(s) 

information of the media objects that are currently active in the scene. As previously 

mentioned, individual media players are tasked with the decoding or rendering 

tasks. The media merging receives that information as OpenGL textures. 

In the case of synthetic 2D and 3D media objects, an interesting approach is 

to use the Framebuffer Object (FBO) to render the objects. FBO allows for the off-

screen rendering of an OpenGL context into a color texture and depth buffer. Thus, 

they can be sent to the media merging step with minor overhead. 

A layered-depth image (or LDI) is a bi-dimensional array of layered-depth 

pixel (LDP). Each layered-depth pixel is an array of NumLayers size that keeps 

depth-pixels (DP). A depth-pixel stores the RGBA color information and the depth 

information. The following details the LDI data structure (depicted in Figure 20). 

 

LayeredDepthImage ={ 

  Pixels[0..xres-1,0..yres-1]: array of LayeredDepthPixel 

} 

 

LayeredDepthPixel = { 

  NumLayers: integer 

  Layers[0..NumLayers-1]: array of DepthPixel 

} 

 

DepthPixel = { 

  ColorRGBA: integer 

  Z: integer 

} 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       84 

 

  

 

Figure 20 Structure of the LDI. 

When composing two depth-pixels that rely on the same position, they must 

be inserted in a way the layered-pixel data structure remains ordered (from the 

closest pixel to the farther one). 

In theory, the number of layers in an LDI structure may be infinite. In 

practice, however, it may be useful to limit the number of layers for optimization 

purposes, allowing a constant rendering time. 

 

4.5.2. 
3D Image Warping 

The 3D image warping kernel receives the LDI structure produced by the 

media merging step and the camera parameters for the output views. It produces the 

N views required by 3D displays (Figure 21). 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       85 

 

  

 

Figure 21 View synthesis for multi-view displays using LDI. 

The general “3D image warping” formulation (HARTLEY; ZISSERMAN, 

2003) (FEHN, 2004), illustrated in Figure 22, allows us to generate arbitrary views 

based on a reference color image with corresponding per-pixel depth map and the 

camera parameters. Conceptually, 3D image warping can be decomposed into two 

basic steps. First, it back projects the 2D pixels of the reference image plane onto 

3D points on the world coordinate system (𝒎 → 𝒎𝑤). Then, it re-projects each 3D 

point in the world coordinate system onto the target image plane (𝒎𝒘 → 𝒎𝑣). 

Each (𝑥, 𝑦) coordinate on the reference LDI may contain multiple colors and 

depths. Therefore, when generating virtual views from the layered-depth 

information, the 3D warping projection must be performed for every DepthPixel in 

the LDI to the corresponding target views. 

 

 

Figure 22 A 3D point 𝒎 being projected in the reference and targeted 

image planes. Adapted from (DARIBO, ISMAEL et al., 2013). 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       86 

 

  

In this thesis, the multi-view synthesis is mainly based on a 1D parallel 

camera configuration. In such configuration, parallaxes only happen in the 

horizontal axis. More specifically, this thesis is interested in the views configuration 

of Figure 23. 

 

 

Figure 23 Geometry of a point P to be rendered in relation with viewer 

distance. Adapted from (HUANG et al., 2010). 

The parallax computation is based on the relationship between the depth and 

pixel location. From triangle similarities in Figure 23, it is possible to compute the 

final DepthPixel’s position in a new view relative to the position of each 

corresponding DepthPixel in the central view as: 

 

 𝑠𝑘 = 𝑠0 + 𝑘 ∗ 𝐸 ∗ 
𝑍𝑚

𝑉 + 𝑍𝑚
 𝜌 (3) 

 

where 

 𝑠0 is the pixel position in the center view (i.e. in the LayeredDepthImage); 

 𝑘 is the view index (e.g. from −4 to 4 for nine views); 

 𝑍𝑚 is the distance from the point 𝑃 to be rendered to the screen; 

 𝐸 is the distance between two consecutive views (in a stereoscopic 

display it can be the interocular distance); 

 𝑉 is the distance between the viewer and the screen; and 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       87 

 

  

 𝜌 is the ratio of the screen definition in number of pixels to the width of 

the display. 

 

To find the 𝑍𝑚 of a media objects (or pixel), the depth values used by 

multimedia authors (in the range [−1.0,1.0]) must be  mapped to 

the [𝑍𝑚𝑖𝑛, 𝑍𝑚𝑎𝑥] range. 𝑍𝑚𝑖𝑛  and 𝑍𝑚𝑎𝑥  parameters can be controlled by the 

multimedia scene through the extensions defined in Section 4.3.1. The viewer may 

also control those values to provide customization on the depth perception. 

When using gray images (depthMap) to represent depth information, each 

pixel value commonly ranges from 0 to 255. The original depth distance must then 

be quantized in this range. Instead of a linear quantization, a common approach is 

to use a non-linear quantization that considers human factors and improves the 

perceived depth (FAN; CHI, 2008), such as: 

 𝑍 =
1 

1
𝑍𝑚𝑖𝑛

(
𝑍

255
) +

1
𝑍𝑚𝑎𝑥

(1 −
𝑧

255
)

; 𝑍 ∈ [0, … ,255]  (4) 

 

3D Warping in OpenCL 

3D warping is pixel-based. Thus, it has the potential to be implemented in 

parallel architectures. The remainder of this subsection discusses how the 3D 

warping formulation above is implemented in GPU parallel architectures using 

OpenCL. 

One of the main problems of running the warping algorithm in parallel is that 

multiple pixels can be mapped to the same final virtual view position. When this 

happens, it should be assured that only the pixel closest to the viewer will be drawn 

on the final virtual view. Therefore, the central problem to calculate the final pixel 

positions in 3D warping parallel implementations is to ensure a thread-safe depth 

test. 

In the special case of parallel camera setups, the pixels will only shift 

horizontally. As a consequence, only pixels that are in the same line can be mapped 

to the same final position. Thus, thread-safe depth test may be avoided if only the 

computation of entire lines are parallelized. This means that each kernel thread 

execution must be tasked with the calculation of all the pixels in the same line of a 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       88 

 

  

frame. This proposed per-line parallel approach has been implemented and tested 

against the more general per-pixel parallel kernel execution. 

In the per-pixel parallel model, the 3D warping kernel runs for each 

LayeredDepthPixel. Each kernel thread execution is responsible for warping all the 

DepthPixel of a LayeredDepthPixel to their final positions. In this approach, the 

aforementioned concurrency problems (see Figure 24) may happen. Therefore, a 

global depth buffer, shared over all computing units of the GPU, is used to ensure 

a thread-safe depth test. 

 

Figure 24 Example of warping multiple pixels to the same target position 

without a thread-safe access to the depth buffer (the frame is shown without 

hole filling). 

To solve this problem, we have  implemented an approach similar to the one 

in (GÜNTHER et al., 2013). If the kernel had access and rendered the depth buffer 

only, atomic operations using atomic_min OpenCL function would be enough to 

guarantee a thread-safe access. However, after depth testing, the access to the color 

buffer is also needed (GÜNTHER et al., 2013). Since there is no built-in function 

in OpenCL to guarantee such a thread-safe access to more than one memory 

position, a semaphore-like synchronization mechanism was implemented and an 

additional lock buffer was added to know if a certain pixel position is locked or not. 

Before reading or writing to depth or color buffers, the 3D warping kernel must first 

acquire lock of the corresponding pixel position. The atomic_cmpxchg operation 

was used to implement such a lock feature. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       89 

 

  

4.5.3. 
Hole filling 

Theoretically, the 3D warping formulation is able to generate infinitely 

desirable views, at any position in space. In practice, however, the lack of data or 

noise in the reference depth information generates a number of artifacts (including 

holes) in the target image, which annoys viewers (see Figure 25). Those artifacts 

increase with the distance between the target and original views.  

 

 

Figure 25 Examples of holes and ghosting artifacts generated by 3D 

warping. 

Compared with traditional 3D warping approaches based on only one texture 

and depth information, the LDI-based 3D warping solves most of the holes, since 

it keeps as much occlusion information as possible. Even so, some holes may still 

be present in the generated views. The hole filling kernel is responsible for filling 

those holes.  

Various techniques for reducing the generation of artifacts in the generated 

views have been proposed. Some of them take place before the 3D warping and 

focus on pre-processing the depth-map aiming at reducing the large number of dis-

occlusions. As an example, some work use Gaussian filters to pre-process the depth 

map to remove the holes generated by 3D warping (TAM et al., 2004). Such 

approach, however, has some drawbacks, such as creating non-natural geometric 

distortions in the generated virtual views. Other proposed techniques include: 

asymmetric Gaussian filter (FEHN, 2003a), bilateral filters (DARIBO, ISMAËL; 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       90 

 

  

SAITO, 2010); and adaptive filters (KOPPEL; BEN MAKHLOUF; NDJIKI-NYA, 

2013). 

Other approaches take place after 3D warping and focus on filling the 

generated holes by using neighboring pixel information. Many techniques have 

been proposed following this approach, such as nearest neighbor, simple 

interpolation, depth-aided interpolation, in-painting, and depth-aided in-

painting (VÁZQUEZ; TAM; SPERANZA, 2006). Some of them are suitable to be 

implemented in parallel architectures, such as the nearest neighbor, and the simple 

interpolation. However, more complex approaches, such as those based on in-

painting techniques (GUILLEMOT; LE MEUR, 2014), are not suitable for parallel 

or real-time implementations. 

Concerning the final visual quality, in-painting techniques usually perform 

better. Subjective tests comparing hole filling techniques have been carried out by 

Vázquez et al. (VÁZQUEZ; TAM; SPERANZA, 2006) and Azzari et 

al. (AZZARI; BATTISTI; GOTCHEV, 2010). Vázquez et al. endorse that “hole 

filling using the background pixels rather than the foreground ones as the dis-

occluded areas is more reasonable by the definition of dis-occlusion”. Based on this 

assumption, the hole filling implemented in this thesis takes into account the depth 

of neighbor pixels for hole filling. 

In each generated view, the hole filling kernel searches for colored pixels in 

the hole neighborhood but that are in the same line of the hole. It then selects the 

ones with the lowest depth values, i.e., the background pixels, and fills the hole with 

a weighted average of those background neighborhood pixels. The weight is based 

on the distance from the pixel to the hole. This approach takes into account that 

pixels belonging to the background are probably the most correct ones to fill dis-

occlusion holes. Figure 26 shows an example of a video-only frame before and after 

the hole filling kernel execution. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       91 

 

  

 

 

Figure 26 Example of a frame before (top) and after (bottom) hole filling 

kernel execution. 

 

4.6. 
Experimental Results 

Two approaches are used to evaluate the layered-depth graphics architecture 

implementation. First, an example of the rendering results when using the layered-

depth for the graphical composition of a simple multimedia scene is presented. The 

scene is composed of an LDV-based video and a 3D model. The rendering result is 

compared with a graphical composition using a 2D+depth only systems. Second, 

the frame rates of rendering the simple multimedia scene with the layered-depth 

rendered are discussed. 

The multimedia scene used in the remainder of this section is based on the 

media objects of Figure 27. Figure 27 shows two media objects: a natural 2D+Z 

media object, and a synthetic 3D media object (which, when rendered, generates 

the texture and depth map presented in Figure 27(b)). 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       92 

 

  

 

(a) 

 

(b) 

Figure 27 Example a (a) video+depth and a (b) the 2D+depth data 

produced by rendering a synthetic 3D object. 

Compared with a DIBR system based on a 2D+depth-only representation of 

the scene—such as the one proposed by (LE FEUVRE; MATHIEU, 2013)—the 

advantage of the layered-depth renderer is straightforward: it keeps as much 

occlusion information as possible. Thus, it helps the process of rendering multiples 

views of the scene. To illustrate such advantage, Figure 28 illustrates the two layers 

of the LDI-based composition between the two media objects of Figure 27. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       93 

 

  

 

Layer (1) 

 

Layer (2) 

Figure 28 The two layers (texture and depth) of the graphical 

composition between the media objects of Figure 27 using the LDI graphics 

architecture. 

After creating the LDI structure (depicted in Figure 28), the 3D warping 

kernel is responsible for generating the views required by 3D displays. To compare 

the rendering results between a DIBR approach using only a 2D+Z 

representation (i.e., the first layer only) and the proposed LDI approach, Figure 29 

shows the rendering result of a virtual view. 

Figure 29(a) shows the rendering of a virtual view using only the first layer 

of the LDI and without hole filling. 

Figure 29(b) shows the rendering result after a simple hole filling that can be 

implemented in real-time (a horizontal depth-based extrapolation). More advanced 

hole filling approaches may achieve better result than the one of Figure 29(b), but 

it is hard to believe that they can recovery the girl’s face based only on one 2D+Z 

data. 

Figure 29(c) shows the rendering result of using the layered-depth rendered 

proposed in this chapter. In it, it is possible to see the girl’s face in the background. 

In the images, some crack in the objects’ border is still present. This is mainly 

because, in the time of this writing, the current implementation does not handle 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       94 

 

  

those borders satisfactorily. Nevertheless, they can be removed by detecting (and 

not warping) the pixels on the objects’ border or by a pre-filtering the depth-map. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 29 Example of a composition between a video+depth and a 

synthetic 3D object. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       95 

 

  

Compared with the 2D+Z-only approach, however, the disadvantage of the 

LDI approach is that there are more pixels (now DepthPixels) to be warped to the 

final views. The rendering time then increases with the depth complexity of the 

scene. Nevertheless, constant timing virtual views rendering can still be supported 

by limiting the number of occlusion layers (which may interesting for many 

applications). Moreover, the LDI graphics architecture is implemented using 

OpenCL aiming at taking advantage of high-parallelism of GPUs and achieving 

real-time performance (at least 30fps).  

Table 1 shows the results of the frame rates execution (the average value after 

100 executions) of the scene in a laptop computer with a Core i7 CPU, 8 GB of 

RAM, and an Nvidia GeForce GT 740M GPU. For comparison purposes, the table 

shows the average frame per-second achieved by rendering the scene following the 

per-line parallel and the per-pixel parallel execution, as discussed in the previous 

section. The final image resolution is the composition of all the views of the 

scene (in the case of the measurements, there are five views horizontally 

multiplexed). 

Media de-coding (for natural objects) or rendering (for synthetic media 

objects) is not taken into account mainly because our main goal is to measure the 

performance of the LDI compositor and the multi-view generator.  

 

Resolution Per-line parallel (fps) Per-pixel parallel (fps) 

1280x720 (HD) 35.50 66.73 

2560x720 (Stereo HD) 18.35 37.42 

1920x1080 (Full-HD) 17.90 32.28 

3840x1080 (Stereo Full-HD) 9.66 17.72 

Table 1 Layered-depth renderer frame rates when rendering the scene 

of Figure 28 using the two proposed parallel methods: per-line parallel and 

per-pixel parallel. 

As can be noticed in Table 1, the OpenCL-based layered-depth renderer 

implementation is able to perform in real-time for full-HD video, and almost in real-

time performance for side-by-side stereoscopic full-HD (2x horizontal resolution 

of full-HD), when running in the per-pixel parallel execution kernel. The per-line 

parallel execution kernel has the advantage of not explicitly requiring concurrent 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       96 

 

  

synchronization mechanisms. However, it runs slower than the per-pixel parallel 

execution kernel. An explanation for the slower performance of the per-line parallel 

execution kernel is that the higher granularity of the data partition fails to fully 

exploit the parallel capabilities of the GPU configuration. 

 

4.7. 
Concluding Remarks 

This chapter proposed extensions to multimedia languages to support a 

layered-depth scene model and a graphics architecture, aimed at being implemented 

by high-end receivers, to support such extensions. The proposed extensions allow 

to develop multimedia applications merging synthetic and natural media objects. 

The proposed architecture for composing different media objects and rendering 

multiple views for 3D displays is implemented using OpenCL for achieving real-

time rendering. Experimental results related to the rendering quality and 

performance have shown the viability of the proposal. 

One of the advantages of using an image-based (2D+Z or LDV) 

representation of the multimedia scene, when compared to a polygon-based, is to 

support a constant-time rendering of the scene, which can be useful for supporting 

real-time systems based on high-quality video. In the LDI case, it is possible to 

support constant time multi-view rendering by limiting the number of layers.  

The drawback of any DIBR approach (including the one presented here) is 

that there is a limitation on the distance between the original camera position and 

the virtual views in which the generated holes do not affect the QoE. The approach 

proposed in the chapter allows to improve the rendering results by taking advantage 

of the occlusion information provided by the LDI structure. 

  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       97 

 

  

5 
Conclusion 

5.1. 
Summary of the Contributions 

In the Introduction chapter of this thesis (Section 1.2) we have defined the 

main research questions we have aimed to answer with this work. Based on those 

research questions, this thesis presents two approaches to support multimedia 

applications in 3DV-based delivery chain scenarios. The contributions of the work 

are related to those approaches. 

 

Stereoscopic Multimedia Applications 

The first proposed approach (Chapter 3) is related to and provide a solution 

that answer the RQ.2. and RQ.3. The proposed approach extends 3DV delivery 

chains based on CSV format through stereoscopic multimedia applications. The 

support to stereoscopic multimedia applications is introduced by depth annotations 

on media objects and a document converter. The document converter takes 

multimedia applications with depth annotations as input and outputs corresponding 

stereoscopic multimedia applications. The conversion process is backward 

compatible with current CSV-based delivery chains, low-end digital receivers, and 

2D-only multimedia language players. Experimental results have shown that the 

generated applications have good enough QoE to deploy interactive-stereoscopic 

services in current CSV-based delivery chains. 

In short, the main contributions of the first part of the thesis are the concept 

of stereoscopic multimedia applications and the process to supporting them at the 

application-level. The proposed stereoscopic multimedia applications have the 

potential to provide new user interfaces for interactive content in 3DV delivery 

chains, such as Interactive 3DTV, Interactive 3D Cinema, and 3D Teleconference. 

Those applications can engage users in different ways, providing realistic S3D 

media objects content or additional mechanism for reinforcing elements in the user 

interface. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       98 

 

  

As additional contributions, the proposed extensions and the conversion 

process have been instantiated to the NCL multimedia language, resulting in two 

open source tools (NCLSC and NCLuaCanvaS3D). NCLSC is the tool to convert 

an NCL document annotated with the proposed extensions into its stereoscopic 

version. A first version of NCLSC was reported in (AZEVEDO; LIMA; SOARES, 

2015). That version has evolved to the one presented in Chapter 3. 

NCLuaCanvaS3D allows developing CSV-based content based on Lua, the 

scripting language of NCL. NCL is the declarative multimedia language 

standardized by the Brazilian Digital Terrestrial TV System, which has also been 

adopted by most of the Latin America countries. Therefore, the discussed tools 

constitute a framework for broadcasters to provide interactive stereoscopic services 

in today NCL-based digital TV systems. 

Appendix B discusses another additional contribution, presenting depth-

based layout templates, which can simplify the author’s work when defining 

complex stereoscopic multimedia applications. 

Although it is possible to envision that in the future most of the digital 

receivers will be high-end ones, with native support for 3D synthetic objects and 

stereoscopic effects, until now most of them are still low-end devices (even those 

with S3D displays). For instance, TV devices with support for OpenGL have only 

appeared in the last year (PERAKAKIS; GHINEA, 2015). Therefore, the 

stereoscopic multimedia application proposed solution allows developers to reach 

3DTV users today. They can also support high-quality CSV-based media content, 

which even by using high-end devices may not be feasible to render at the client 

side in real time.  

 

Layered-depth-aware Multimedia Applications 

The second proposed approach (Chapter 4) is related to and provide answers 

to RQ.4 and RQ.5. The proposed solution considers a 3DV delivery chain based on 

depth information—a 3DV representation that allows advanced features such as 

client-side adaptation of depth perception and multi-view displays support. In this 

scenario, layered-depth-aware multimedia applications are proposed. Extensions to 

multimedia languages allowing authors to control the per-pixel graphical 

composition of media objects are discussed. A graphics architecture supporting the 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       99 

 

  

rendering of multiple views for layered-depth-aware multimedia applications is 

also discussed. 

In summary, the main contributions of the second part of the thesis are the 

proposed extensions and the graphics architecture for rendering high-quality virtual 

views while taking advantage of the good performance provided by DIBR methods. 

The use of a layered-depth graphical composition allows keeping as much occlusion 

information as possible during the graphics composition process, which simplifies 

the multi-view rendering and hole filling processes. When compared to related 

work, the layered-depth approach allows one to get better virtual views rendering 

quality. 

Layered-depth multimedia applications can also be used to provide advanced 

user interfaces taking advantage of the real depth information and new 3D displays. 

An example of such applications is augmented reality applications that can 

seamlessly integrate natural and synthetic media objects. 

As in the stereoscopic multimedia applications, the layered-depth multimedia 

application proposal has also been integrated and tested in 3DTV delivery chains 

based on ISDB-T and its declarative middleware Ginga-NCL. Future versions of 

ISDB-T/Ginga-NCL targeting advanced 3DV services can then take advantage of 

the proposals herein. 

A first integration of 3D objects (simple and composite ones) in NCL 

documents was reported in (AZEVEDO; SOARES, 2012). Despite focusing mainly 

on controlling the behavior of the embedded 3D objects, the reported 

implementation was used as a starting pointing for the layered-depth renderer 

proposed in this thesis. Preliminary results on 2D+depth media extensions for NCL 

were discussed in (AZEVEDO; SOARES, 2013). The carried out implementation 

transformed the texture+depth data of media objects into a mesh of triangles to 

rendering stereoscopic views based on OpenGL. It did not provide a real-time 

rendering for high-definition images and video media objects. However, the 

experience of this first implementation has allowed for finding the main problems 

related with transforming the image+depth data into traditional meshes, and to 

further advance with a DIBR and a layered-depth solution. In addition, based on 

the implementation, a complete end-to-end interactive 3DTV delivery chain based 

on video+depth was presented in (AZEVEDO; SOARES, 2014). An instantiation 

of the proposed chain for ISDB-T and NCL was also discussed, in which interactive 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       100 

 

  

content supporting the extensions defined are supported. The first implementation 

of the OpenCL-based DIBR process (AZEVEDO et al., 2014) has evolved into the 

layered-depth architecture discussed in Chapter 4. It was a real-time (performance 

of at least 30fps) depth-image-based rendering for only video+depth representation, 

not ready to compose different media objects. The architecture of Chapter 4 allows 

for composing different media objects and the generation of multiple views. 

 

5.2. 
Future Research 

Viewing stereoscopic 3D content through 3D displays is different from real-

world viewing. Notably, the natural synchronization between accommodation and 

vergence (see Section A.1 for details) is lost when seeing 3D content in S3D 

displays. Even with perfect S3D content, some QoE issues may arise due to 

different user’s preferences and viewing conditions. In particular, for stereoscopic 

multimedia applications, the first part of the thesis provides means to customize 

depth perception and discusses experimental results evidencing that de-

synchronization issues do not significantly affect the QoE perceived by users. 

However, assessing the final QoE through subjective experiments is an important 

future work. Moreover, the development of meaningful S3D applications content, 

which improve QoE when compared to 2D-only content, is still an important issue 

to be researched in stereoscopic 3D presentations. 

Concerning the layered-depth multimedia applications, future work includes 

the use of GPU to decode color and depth frames, and the evolution of the system 

to support FTV applications. In this case, arbitrary (possibly with movement) 

camera configurations must be supported. When using arbitrary camera 

configurations, mainly the ones with wide baseline, more advanced hole filling 

approaches, possibly based on in-painting techniques, will be necessary. Therefore, 

how to efficiently map such algorithms, which are not easily parallelizable, to the 

GPGPU must also be handled. Moreover, the extension of the layered-depth 

approach for new super-multi-view displays, which support hundreds of views, is 

also another interesting future work. In such a case, the extension of the layered-

depth architecture to run on multiple GPUs may be needed. As in the stereoscopic 

multimedia application, the QoE assessment by final users using layered-depth 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       101 

 

  

multimedia application and multi-view 3D displays is also an important future 

work. 

As a whole, the proposals of this work can be seen as part of an active and 

exciting 3D Media research field that includes all phases in a 3DV delivery chain: 

capturing, coding, transmission, decoding, rendering, and display. Even though all 

these phases have been researched and many important advancements have been 

achieved, there are still many open issues that should be fulfilled to achieve 

successful high-quality end-to-end 3DV systems. 

  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       102 

 

  

6 
References 

AMORIM, Glauco Fiorott; DOS SANTOS, Joel André Ferreira; MUCHALUAT-

SAADE, Débora Christina. Adaptive layouts for authoring NCL programs. In: 

19TH BRAZILIAN SYMPOSIUM ON MULTIMEDIA AND THE WEB, 

WebMedia ’13, 2013, [S.l.]: ACM Press, 2013. p. 205–208. Disponível em: 

<http://dl.acm.org/citation.cfm?doid=2526188.2526234>. Acesso em: 9 set. 2014.  

APPLE. The WebKit open source project. Disponível em: 

<http://www.webkit.org>. Acesso em: 4 dez. 2015.  

ATSC. ATSC Standard: 3D-TV Terrestrial Broadcasting, Part 1. , no ATSC A/104 

Part 1:2014. [S.l.]: Advanced Television Systems Committee, 4 ago. 2014. 

Awwwards Team: 10 stereoscopic 3d websites. Disponível em: 

<http://www.awwwards.com/10-stereoscopic-3d-websites.html>. Acesso em: 4 

dez. 2014.  

AZEVEDO, Roberto Gerson de Albuquerque et al. Real-time Depth-Image-Based 

Rendering for 3DTV using OpenCL. In: INTERNATIONAL SYMPOSIUM ON 

VISUAL COMPUTING, dez. 2014, Las Vegas. Anais... Las Vegas: [s.n.], dez. 

2014.  

AZEVEDO, Roberto Gerson de Albuquerque. Suporte ao controle e à 

apresentação de objetos de mídia tridimensionais em NCL. 2010. Master Thesis – 

Rio de Janeiro, 2010. Disponível em: <http://www2.dbd.puc-

rio.br/pergamum/biblioteca/php/mostrateses.php?open=1&arqtese=0821387_10_I

ndice.html>.  

AZEVEDO, Roberto Gerson de Albuquerque; LIMA, Guilherme; SOARES, Luiz 

Fernando Gomes. An Approach to Convert NCL Applications into Stereoscopic 

3D. In: DOCENG, 2015, Lausanne, Switzerland. Anais... Lausanne, Switzerland: 

[s.n.], 2015.  

AZEVEDO, Roberto Gerson de Albuquerque; SOARES, Luiz Fernando Gomes. 

Embedding 3D Objects into NCL Multimedia Presentations. Web3D ’12, 2012, 

New York, NY, USA. Anais... New York, NY, USA: ACM, 2012. p. 143–151. 

Disponível em: <http://doi.acm.org/10.1145/2338714.2338739>.  

AZEVEDO, Roberto Gerson de Albuquerque; SOARES, Luiz Fernando Gomes. 

Ginga extensions to support depth-based 3D media. jul. 2014, [S.l: s.n.], jul. 2014. 

p. 1–4.  

AZEVEDO, Roberto Gerson de Albuquerque; SOARES, Luiz Fernando Gomes. 

NCL+Depth: Extending NCL for Stereo/Autostereoscopic 3D Displays. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       103 

 

  

WebMedia ’13, 2013, New York, NY, USA. Anais... New York, NY, USA: ACM, 

2013. p. 185–192. Disponível em: 

<http://doi.acm.org/10.1145/2526188.2526203>.  

AZZARI, Lucio; BATTISTI, Federica; GOTCHEV, Atanas. Comparative analysis 

of occlusion-filling techniques in depth image-based rendering for 3D videos. 2010, 

[S.l.]: ACM, 2010. p. 57–62. Disponível em: 

<http://dl.acm.org/citation.cfm?id=1878037>. Acesso em: 9 abr. 2014.  

BADROS, Greg J. et al. A constraint extension to scalable vector graphics. In: 

10TH INTERNATIONAL CONFERENCE ON WORLD WIDE WEB, WWW 

’01, 2001, [S.l.]: ACM Press, 2001. p. 489–498. Disponível em: 

<http://portal.acm.org/citation.cfm?doid=371920.372146>. Acesso em: 10 set. 

2014.  

BARENBRUG, B. Declipse 2: multi-layer image and depth with transparency 

made practical. 5 fev. 2009, [S.l: s.n.], 5 fev. 2009. p. 72371G. Disponível em: 

<http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.80681

9>. Acesso em: 29 maio 2015.  

BARTCZAK, B et al. Display-Independent 3D-TV Production and Delivery Using 

the Layered Depth Video Format. IEEE Transactions on Broadcasting, v. 57, n. 2, 

p. 477–490, jun. 2011. 

BEHR, J. et al. A Scalable Architecture for the HTML5/X3D Integration Model 

X3DOM. Web3D ’10, 2010, New York, NY, USA. Anais... New York, NY, USA: 

ACM, 2010. p. 185–194. Disponível em: 

<http://doi.acm.org/10.1145/1836049.1836077>.  

BEHR, Johannes et al. Dynamic and Interactive Aspects of X3DOM. Web3D ’11, 

2011, New York, NY, USA. Anais... New York, NY, USA: ACM, 2011. p. 81–87. 

Disponível em: <http://doi.acm.org/10.1145/2010425.2010440>.  

BEHR, Johannes et al. X3DOM: A DOM-based HTML5/X3D Integration Model. 

Web3D ’09, 2009, New York, NY, USA. Anais... New York, NY, USA: ACM, 

2009. p. 127–135. Disponível em: 

<http://doi.acm.org/10.1145/1559764.1559784>.  

BENZIE, P. et al. A Survey of 3DTV Displays: Techniques and Technologies. 

IEEE Transactions on Circuits and Systems for Video Technology, v. 17, n. 11, p. 

1647–1658, nov. 2007. 

BORNING, Alan; LIN, Richard Kuang-Hsu; MARRIOTT, Kim. Constraint-based 

document layout for the Web. Multimedia Systems, v. 8, n. 3, p. 177–189, 1 out. 

2000. 

BOURGE, Arnaud; GOBERT, Jean; BRULS, Fons. MPEG-C part 3: Enabling the 

introduction of video plus depth contents. 2006, [S.l: s.n.], 2006.  

BRUTZMAN, Don. X3D: extensible 3D graphics for Web authors. Amsterdam ; 

Boston: Elsevier, 2007.  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       104 

 

  

BULTERMAN, Dick et al. Synchronized Multimedia Integration Language (SMIL 

3.0). W3C Recommendation. [S.l.]: W3C, dez. 2008. Disponível em: 

<http://www.w3.org/TR/SMIL3/>. Acesso em: 30 jul. 2015. 

CABANIER, Rik et al. HTML Canvas 2D Context. W3C Candidate 

Recommendation. [S.l.]: W3C, 2 jul. 2015. 

CAGNAZZO, Marco; PESQUET-POPESCU, Béatrice; DUFAUX, Frédéric. 3D 

Video Representation and Formats. In: DUFAUX, FRÉDÉRIC; PESQUET-

POPESCU, BÉATRICE; CAGNAZZO, MARCO (Org.). . Emerging Technologies 

for 3D Video. Chichester, UK: John Wiley & Sons, Ltd, 2013. p. 102–120. 

Disponível em: <http://doi.wiley.com/10.1002/9781118583593.ch6>. Acesso em: 

8 jun. 2015.  

CESAR, Pablo. A graphics software architecture for high-end interactive TV 

terminals. 2005. Helsinki University of Technology, Espoo, 2005.  

CESAR, Pablo; VUORIMAA, Petri; VIERINEN, Juha. A graphics architecture for 

high-end interactive television terminals. ACM Transactions on Multimedia 

Computing, Communications, and Applications, v. 2, n. 4, p. 343–357, 1 nov. 2006. 

CHENG, Xiaoyu; SUN, Lifeng; YANG, Shiqiang. Generation of Layered Depth 

Images from Multi-View Video. 2007, [S.l.]: IEEE, 2007. p. V – 225–V – 228. 

Disponível em: 

<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4379806>. 

Acesso em: 25 maio 2015.  

CHEN, Qinshui et al. An approach to support stereoscopic 3D web. In: ANNUAL 

ACM SYMPOSIUM ON APPLIED COMPUTING, SAC’13, 2014, [S.l.]: ACM 

Press, 2014. p. 981–984. Disponível em: 

<http://dl.acm.org/citation.cfm?doid=2554850.2555096>. Acesso em: 8 set. 2014.  

CHEN, Qinshui; WANG, Wenmin; WANG, Ronggang. The rendering context for 

stereoscopic 3D web. 6 mar. 2014, [S.l: s.n.], 6 mar. 2014. p. 90111P. Disponível 

em: 

<http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.20388

28>. Acesso em: 29 jul. 2014.  

CHEN, Ying et al. Overview of the MVC+D 3D video coding standard. Journal of 

Visual Communication and Image Representation, v. 25, n. 4, p. 679–688, maio 

2014. 

CHEN, Ying; VETRO, Anthony. Next-Generation 3D Formats with Depth Map 

Support. MultiMedia, IEEE, v. 21, n. 2, p. 90–94, abr. 2014. 

CHISTYAKOV, Alexey; GONZÁLEZ-ZÚÑIGA, Diego; CARRABINA, Jordi. 

Bringing the Web Closer: Stereoscopic 3D Web Conversion. Human Computer 

Interaction. [S.l.]: Springer, 2013. p. 22–25. Disponível em: 

<http://link.springer.com/chapter/10.1007/978-3-319-03068-5_5>. Acesso em: 24 

jul. 2014.  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       105 

 

  

CLARK, James H. Hierarchical Geometric Models for Visible Surface Algorithms. 

Commun. ACM, v. 19, n. 10, p. 547–554, out. 1976. 

COCKBURN, Andy; MCKENZIE, Bruce. Evaluating the effectiveness of spatial 

memory in 2D and 3D physical and virtual environments. In: SIGCHI 

CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI ’02, 

2002, [S.l.]: ACM Press, 2002. p. 203–210. Disponível em: 

<http://portal.acm.org/citation.cfm?doid=503376.503413>. Acesso em: 4 ago. 

2014.  

CUTTING, James E.; VISHTON, Peter M. Perceiving Layout and Knowing 

Distances. Perception of Space and Motion. [S.l.]: Elsevier, 1995. p. 69–117. 

Disponível em: 

<http://linkinghub.elsevier.com/retrieve/pii/B9780122405303500055>. Acesso 

em: 17 jun. 2015.  

DANE, Gökçe; BHASKARAN, Vasudev. Multiview synthesis for 

autostereoscopic displays. 26 set. 2013, [S.l: s.n.], 26 set. 2013. p. 885610. 

Disponível em: 

<http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.20265

54>. Acesso em: 20 jun. 2014.  

DARIBO, Ismael et al. Hole Filling for View Synthesis. In: ZHU, CE et al. (Org.). 

. 3D-TV System with Depth-Image-Based Rendering. [S.l.]: Springer New York, 

2013. p. 169–189. Disponível em: <http://dx.doi.org/10.1007/978-1-4419-9964-

1_6>.  

DARIBO, Ismaël; SAITO, Hideo. Bilateral depth-discontinuity filter for novel 

view synthesis. 2010, [S.l.]: IEEE, 2010. p. 145–149. Disponível em: 

<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5662009>. Acesso em: 23 

maio 2014.  

DODGSON, Neil A. Analysis of the viewing zone of multiview autostereoscopic 

displays. 24 maio 2002, [S.l: s.n.], 24 maio 2002. p. 254–265. Disponível em: 

<http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=875998>. 

Acesso em: 11 ago. 2015.  

DODGSON, NEIL A. Autostereoscopic 3D Displays. 2005. 

DOS SANTOS, JoelAndréFerreira; MUCHALUAT-SAADE, DéboraChristina. 

XTemplate 3.0: spatio-temporal semantics and structure reuse for hypermedia 

compositions. Multimedia Tools and Applications, v. 61, n. 3, p. 645–673, 2012. 

DUFOURD, Jean-Claude; AVARO, Olivier; CONCOLATO, Cyril. An MPEG 

standard for rich media services. IEEE MultiMedia, v. 12, n. 4, p. 60–68, 2005. 

DVB. Plano-stereoscopic 3DTV; Digital Video Broadcasting (DVB); Plano-

stereoscopic 3DTV; Part 1: Overview of the multipart. , no DVB Document A154-

1. [S.l.]: Digital Video Broadcasting (DVB), mar. 2015. Disponível em: 

<http://www.etsi.org/deliver/etsi_ts/101500_101599/10154701/01.01.01_60/ts_10

154701v010101p.pdf>. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       106 

 

  

ETEMAD, Elika; JR, Tab Atkins; ATANASSOV, Rossen. CSS Grid Layout 

Module Level 1. W3C Working Draft. [S.l.]: W3C, maio 2014. Disponível em: 

<http://www.w3.org/TR/2014/WD-css-grid-1-20140513/>. 

FAN, Yu-Cheng; CHI, Tsung-Chen. The Novel Non-Hole-Filling Approach of 

Depth Image Based Rendering. maio 2008, [S.l.]: IEEE, maio 2008. p. 325–328. 

Disponível em: 

<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4547874>. 

Acesso em: 18 ago. 2014.  

FEHN, Christoph. 3D TV broadcasting. Fraunhofer Institute for 

Telecommunications, Berlin, Germany, Information Society Technologies, 

Proposal No. IST-2001-34396, 2005. Disponível em: 

<http://books.google.com/books?hl=en&lr=&id=fdrTq7cWxmwC&oi=fnd&pg=P

A23&dq=%22concept+of+an+end-to-

end+stereoscopic+video+chain.+Thereafter,+an%22+%22HISTORY+OF+3D+T

V%22+%22the+advent+of+motion+pictures,+the+popularity+of+the+stereoscope

+began+to%22+&ots=1lfaRSGnrF&sig=c8k-QYGBdCxzKMYVWQlon-

xz5bY>. Acesso em: 19 mar. 2015. 

FEHN, Christoph. A 3D-TV approach using depth-image-based rendering (DIBR). 

2003a, [S.l: s.n.], 2003. p. 482–487. Disponível em: 

<http://www.actapress.com/PaperInfo.aspx?PaperID=14373>. Acesso em: 9 abr. 

2014.  

FEHN, Christoph. A 3D-TV system based on video plus depth information. 2003b, 

[S.l.]: IEEE, 2003. p. 1529–1533. Disponível em: 

<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1292241>. Acesso em: 18 

jul. 2014.  

FEHN, Christoph. Depth-image-based rendering (DIBR), compression, and 

transmission for a new approach on 3D-TV. Proc. SPIE, v. 5291, p. 93–104, 21 

maio 2004. 

FUCHS, Henry; STATE, Andrei; BAZIN, Jean-Charles. Immersive 3D 

Telepresence. Computer, v. 47, n. 7, p. 46–52, jul. 2014. 

GENG, Jason. Three-dimensional display technologies. Advances in Optics and 

Photonics, v. 5, n. 4, p. 456, 31 dez. 2013. 

GOLDMANN, Lutz; LEE, Jong-Seok; EBRAHIMI, Touradj. Temporal 

synchronization in stereoscopic video: Influence on quality of experience and 

automatic asynchrony detection. set. 2010, [S.l.]: IEEE, set. 2010. p. 3241–3244. 

Disponível em: 

<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5651142>. 

Acesso em: 20 jun. 2014.  

GOLDSTEIN, E. Bruce. Sensation and perception. Ninth edition ed. Belmont, CA: 

Wadsworth, Cengage Learning, 2014.  

GOTCHEV, A et al. Three-Dimensional Media for Mobile Devices. Proceedings 

of the IEEE, v. 99, n. 4, p. 708–741, abr. 2011. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       107 

 

  

GRAY, Kris. Microsoft DirectX 9 programmable graphics pipeline. [S.l.]: 

Microsoft Pr, 2003.  

GUILLEMOT, Christine; LE MEUR, Olivier. Image Inpainting : Overview and 

Recent Advances. IEEE Signal Processing Magazine, v. 31, n. 1, p. 127–144, jan. 

2014. 

GÜNTHER, Christian et al. A GPGPU-based Pipeline for Accelerated Rendering 

of Point Clouds. Journal of WSCG, v. 21, n. 2, p. 153–162, 2013. 

HANG, Soonbo; LEE, Dong-Yong. Extensions for Stereoscopic 3D support. . [S.l: 

s.n.], 30 nov. 2012. Disponível em: 

<http://www.w3.org/2011/webtv/3dweb/3dweb_proposal_121130.html>. Acesso 

em: 27 set. 2014. 

HARTLEY, Richard; ZISSERMAN, Andrew. Multiple view geometry in computer 

vision. Cambridge, UK; New York: Cambridge University Press, 2003. Disponível 

em: <http://dx.doi.org/10.1017/CBO9780511811685>. Acesso em: 24 jan. 2015.  

HÉGARET, Philippe Le et al. Document Object Model (DOM) Level 3 Core 

Specification. W3C Recommendation. [S.l.]: W3C, abr. 2004. 

HONG, Jisoo et al. Three-dimensional display technologies of recent interest: 

principles, status, and issues [Invited]. Applied Optics, v. 50, n. 34, p. H87, 1 dez. 

2011. 

HOWARD, Ian P.; ROGERS, Brian J. Binocular Vision and Stereopsis. [S.l.]: 

Oxford University Press, 1996. Disponível em: 

<http://www.oxfordscholarship.com/view/10.1093/acprof:oso/9780195084764.00

1.0001/acprof-9780195084764>. Acesso em: 11 ago. 2014.  

HO, Yo-Sung; OH, Kwan-Jung. Overview of multi-view video coding. 2007, [S.l.]: 

IEEE, 2007. p. 5–12. Disponível em: 

<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4381085>. Acesso em: 9 

abr. 2014.  

HTML5. . [S.l.]: W3C, 28 out. 2014. Disponível em: 

<http://www.w3.org/TR/html5/>. Acesso em: 11 nov. 2014. 

HUANG, Wei-Hao et al. Real-time novel rendering architecture for 3D display. 

Proc. of Electronics and Optoelectronics Research Laboratories, 2010. Disponível 

em: <http://cgit.nutn.edu.tw:8080/cgit/PaperDL/WSY_100930054957.PDF>. 

Acesso em: 17 abr. 2014. 

IJSSELSTEIJIN, Wijnand A.; SEUNTIENS, Pieter .J. H.; MEESTERS, Lydia M. 

J. Human Factors of 3D Displays. 3D Videocommunications. [S.l: s.n.], 2001. .  

ISO. ISO IEC 23002-3 - Information technology — MPEG video technologies — 

Representation of auxiliary video and supplemental information. , no ISO IEC 

23002-3. [S.l: s.n.], 2007. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       108 

 

  

ISO. The Virtual Reality Modeling Language Specification. Version 2.0. , no 

ISO/IEC WD 14772-1:1997. [S.l.]: ISO/IEC, 1997. 

JACOBS, Charles et al. Adaptive document layout. Communications of the ACM, 

v. 47, n. 8, p. 60, 1 ago. 2004. 

JANKOWSKI, Jacek et al. Declarative integration of interactive 3D graphics into 

the world-wide web: principles, current approaches, and research agenda. 2013, 

[S.l.]: ACM, 2013. p. 39–45. Disponível em: 

<http://dl.acm.org/citation.cfm?id=2466547>. Acesso em: 16 abr. 2014.  

JUMISKO-PYYKKÖ, Satu; WEITZEL, Mandy; STROHMEIER, Dominik. 

Designing for user experience: what to expect from mobile 3D TV and video? 2008, 

[S.l.]: ACM, 2008. p. 183–192. Disponível em: 

<http://dl.acm.org/citation.cfm?id=1453841>. Acesso em: 8 maio 2014.  

JUNG, Kwanghee et al. 2D/3D Mixed Service in T-DMB System Using Depth 

Image Based Rendering. fev. 2008, [S.l: s.n.], fev. 2008. p. 1868–1871.  

KIM, Nam et al. 3D Display Technology. Display and Imaging, v. 1, p. 73–95, 

2013. 

KONDOZ, Ahmet; DAGIUKLAS, Tasos (Org.). 3D Future Internet Media. New 

York, NY: Springer New York, 2014. Disponível em: 

<http://link.springer.com/10.1007/978-1-4614-8373-1>. Acesso em: 23 abr. 2014.  

KOPPEL, Martin; BEN MAKHLOUF, Mehdi; NDJIKI-NYA, Patrick. Optimized 

Adaptive Depth Map Filtering. 2013, [S.l.]: IEEE, 2013. p. 1356–1360. Disponível 

em: <http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6738279>. Acesso em: 

5 maio 2014.  

KRONOS GROUP. WebGL Specification v1.0.2. . [S.l: s.n.], mar. 2013. Disponível 

em: <https://www.khronos.org/registry/webgl/specs/1.0/>. Acesso em: 11 set. 

2014. 

LANG, Manuel et al. Nonlinear disparity mapping for stereoscopic 3D. ACM 

Transactions on Graphics (TOG), v. 29, n. 4, p. 75, 2010. 

LEBRETON, Pierre et al. 3D Video. In: MÃ¶LLER, SEBASTIAN; RAAKE, 

ALEXANDER (Org.). . Quality of Experience. T-Labs Series in 

Telecommunication Services. [S.l.]: Springer International Publishing, 2014. p. 

299–313. Disponível em: <http://dx.doi.org/10.1007/978-3-319-02681-7_20>.  

LEE, BongHo; YUN, Kugjin; LEE, Hyun; et al. Rich Media Services for T-DMB: 

3-D Video and 3-D Data Applications. In: JAVIDI, BAHRAM; OKANO, FUMIO; 

SON, JUNG-YOUNG (Org.). . Three-dimensional Imaging, Visualization, and 

Display. [S.l.]: Springer US, 2009. p. 131–151. Disponível em: 

<http://dx.doi.org/10.1007/978-0-387-79335-1_8>.  

LEE, BongHo; YUN, Kugjin; HUR, Namho; et al. Stereoscopic contents authoring 

system for 3D DMB data service. 5 fev. 2009, [S.l: s.n.], 5 fev. 2009. p. 72371D–

72371D–12. Disponível em: 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       109 

 

  

<http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=811327>. 

Acesso em: 17 dez. 2014.  

LEE, Hyun et al. A structure for 2D/3D mixed service based on terrestrial DMB 

system. 2007, [S.l.]: IEEE, 2007. p. 1–4. Disponível em: 

<http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4379423>. Acesso em: 16 

maio 2014.  

LE FEUVRE, Jean et al. Experimenting with Multimedia Advances Using GPAC. 

MM ’11, 2011, New York, NY, USA. Anais... New York, NY, USA: ACM, 2011. 

p. 715–718. Disponível em: <http://doi.acm.org/10.1145/2072298.2072427>.  

LE FEUVRE, Jean. SVG Extensions for 3D displays Enabling SVG on auto-

stereoscopic displays. 2010, [S.l: s.n.], 2010. Disponível em: 

<https://www.svgopen.org/2010/papers/54-SVG_Extensions_for_3D_displays/>.  

LE FEUVRE, Jean. Towards Declarative 3D in Web Architecture. 2012. 

LE FEUVRE, Jean; CONCOLATO, Cyril; MOISSINAC, Jean-Claude. GPAC: 

open source multimedia framework. 2007, [S.l.]: ACM Press, 2007. p. 1009. 

Disponível em: <http://portal.acm.org/citation.cfm?doid=1291233.1291452>. 

Acesso em: 31 jul. 2014.  

LE FEUVRE, Jean; MATHIEU, Yves. Graphics Composition for Multiview 

Displays. Emerging Technologies for 3D Video: Creation, Coding, Transmission 

and Rendering, p. 450–467, 2013. 

LEVELT, Willem JM. On binocular rivalry. 1965. Van Gorcum Assen, 1965.  

LEVKOVICH-MASLYUK, L. et al. Depth Image-Based Representation and 

Compression for Static and Animated 3-D Objects. IEEE Transactions on Circuits 

and Systems for Video Technology, v. 14, n. 7, p. 1032–1045, jul. 2004. 

LIMA, Guilherme Augusto Ferreira; SOARES, Luiz Fernando Gomes. Two normal 

forms for link-connector pairs in NCL 3.0. 2013, [S.l.]: ACM Press, 2013. p. 201–

204. Disponível em: <http://dl.acm.org/citation.cfm?doid=2526188.2526238>. 

Acesso em: 17 mar. 2015.  

LIM, Young-Kwon et al. MPEG Multimedia Scene Representation. In: 

CHIARIGLIONE, LEONARDO (Org.). . The MPEG Representation of Digital 

Media. New York, NY: Springer New York, 2012. p. 177–202. Disponível em: 

<http://link.springer.com/10.1007/978-1-4419-6184-6_10>. Acesso em: 10 jun. 

2015.  

LIU, Zhongxin; WANG, Wenmin; WANG, Ronggang. The design and 

implementation of stereoscopic 3D scalable vector graphics based on WebKit. 6 

mar. 2014, [S.l: s.n.], 6 mar. 2014. p. 90111R. Disponível em: 

<http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.20386

81>. Acesso em: 29 jul. 2014.  

LUMLEY, John; GIMSON, Roger; REES, Owen. A framework for structure, 

layout & function in documents. DocEng ’05, 2005, [S.l.]: ACM Press, 2005. p. 32. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       110 

 

  

Disponível em: <http://portal.acm.org/citation.cfm?doid=1096601.1096615>. 

Acesso em: 10 set. 2014.  

LUMLEY, John W. Functional, extensible, svg-based variable documents. DocEng 

’13, 2013, [S.l.]: ACM Press, 2013. p. 131–140. Disponível em: 

<http://dl.acm.org/citation.cfm?doid=2494266.2494274>. Acesso em: 10 set. 

2014.  

MCCORMACK, Cameron et al. Scalable Vector Graphics (SVG) 1.1 (Second 

Edition). W3C Recommendation. [S.l.]: W3C, ago. 2011. 

MCMILLAN JR., Leonard. An Image-Based Approach To Three-Dimensional 

Computer Graphics. . [S.l: s.n.], 1997. 

MENDIBURU, Bernard. 3D TV and 3D cinema tools and processes for creative 

stereoscopy. Waltham, MA: Focal Press/Elsevier, 2012. Disponível em: 

<http://site.ebrary.com/id/10483435>. Acesso em: 18 jun. 2014.  

MÜLLER, K; MERKLE, P; WIEGAND, T. 3-D Video Representation Using 

Depth Maps. Proceedings of the IEEE, v. 99, n. 4, p. 643–656, abr. 2011. 

MUNSHI, Aaftab. OpenCL programming guide. Upper Saddle River, NJ: Addison-

Wesley, 2012.  

NOCENT, Olivier et al. Toward an Immersion Platform for the World Wide Web 

Using Autostereoscopic Displays and Tracking Devices. Web3D ’12, 2012, New 

York, NY, USA. Anais... New York, NY, USA: ACM, 2012. p. 69–72. Disponível 

em: <http://doi.acm.org/10.1145/2338714.2338724>.  

O3D Project’s page. Disponível em: <https://code.google.com/p/o3d/>. Acesso 

em: 4 dez. 2014.  

ORTIZ JR., Sixto. Is 3D Finally Ready for the Web? Computer, v. 43, n. 1, p. 14–

16, jan. 2010. 

OSFIELD, Robert; BURNS, Don; OTHERS. Open scene graph. [S.l: s.n.], 2004.  

PERAKAKIS, Emmanouil; GHINEA, Gheorghita. A proposed model for cross-

platform web 3D applications on smart TV systems. 2015, [S.l.]: ACM Press, 2015. 

p. 165–166. Disponível em: 

<http://dl.acm.org/citation.cfm?doid=2775292.2778303>. Acesso em: 17 ago. 

2015.  

PERKINS, M.G. Data compression of stereopairs. IEEE Transactions on 

Communications, v. 40, n. 4, p. 684–696, abr. 1992. 

PICKERING, Mark R. Stereoscopic and Multi-View Video Coding. Academic 

Press Library in Signal Processing: Image and Video Compression and 

Multimedia, v. 5, p. 119, 2014. 

REDERT, A. et al. Advanced three-dimensional television system technologies. 

2002, [S.l.]: IEEE Comput. Soc, 2002. p. 313–319. Disponível em: 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       111 

 

  

<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1024077>. 

Acesso em: 13 abr. 2014.  

ROTARD, Martin. Layout Managers for Scalable Vector. In: SVG OPEN, ago. 

2005, Enschede, The Netherlands. Anais... Enschede, The Netherlands: [s.n.], ago. 

2005.  

SABIRIN, Houari et al. DMB Application Format for Mobile Multimedia Services. 

IEEE Multimedia, v. 19, n. 2, p. 38–47, 2012. 

SANT’ANNA, Francisco; CERQUEIRA, Renato; SOARES, Luiz Fernando 

Gomes. NCLua: Objetos Imperativos Lua Na Linguagem Declarativa NCL. 

WebMedia ’08, 2008, New York, NY, USA. Anais... New York, NY, USA: ACM, 

2008. p. 83–90. Disponível em: <http://doi.acm.org/10.1145/1666091.1666107>.  

SCHEMALI, Leila; EISEMANN, Elmar. Design and evaluation of mouse cursors 

in a stereoscopic desktop environment. mar. 2014, [S.l.]: IEEE, mar. 2014. p. 67–

70. Disponível em: 

<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6798844>. 

Acesso em: 19 mar. 2015.  

SEUNTIENS, Pieter; MEESTERS, Lydia; IJSSELSTEIJN, Wijnand. Perceived 

quality of compressed stereoscopic images: Effects of symmetric and asymmetric 

JPEG coding and camera separation. ACM Transactions on Applied Perception, v. 

3, n. 2, p. 95–109, 1 abr. 2006. 

SHADE, Jonathan et al. Layered depth images. 1998, [S.l.]: ACM, 1998. p. 231–

242. Disponível em: <http://dl.acm.org/citation.cfm?id=280882>. Acesso em: 9 

abr. 2014.  

SHIBATA, T. et al. The zone of comfort: Predicting visual discomfort with stereo 

displays. Journal of Vision, v. 11, n. 8, p. 11–11, 21 jul. 2011. 

SHREINER, Dave et al. OpenGL programming guide: The Official guide to 

learning OpenGL, version 4.3. [S.l.]: Addison-Wesley Professional, 2013.  

SIGNES, Julien; FISHER, Yuval; ELEFTHERIADIS, Alexandros. MPEG-4’s 

binary format for scene description. Signal Processing: Image Communication, v. 

15, n. 4, p. 321–345, 2000. 

SMOLIC, Aljoscha et al. Coding Algorithms for 3DTV; A Survey. IEEE 

Transactions on Circuits and Systems for Video Technology, v. 17, n. 11, p. 1606–

1621, nov. 2007. 

SOARES, Luiz Fernando Gomes et al. Revisiting the Inter and Intra-Media 

Synchronization Model of the NCL Player Architecture. In: MEDIASYNC, 2013, 

[S.l: s.n.], 2013.  

SOARES, Luiz Fernando Gomes; LIMA, Guilherme Ferreira. NCL Handbook. , 

Monografias em Ciências da Computação., no 18/13. [S.l.]: Pontifícia Universidade 

Católica do Rio de Janeiro, 2013. Disponível em: <http://handbook.ncl.org.br>. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       112 

 

  

SOARES, Luiz Fernando Gomes; MORENO, Marcelo Ferreira; SANT’ANNA, 

Francisco. Relating declarative hypermedia objects and imperative objects through 

the NCL glue language. 2009, [S.l.]: ACM Press, 2009. p. 222. Disponível em: 

<http://portal.acm.org/citation.cfm?doid=1600193.1600243>. Acesso em: 2 set. 

2014.  

SOARES NETO, CarlosdeSalles; SOARES, LuizFernandoGomes; DE SOUZA, 

ClarisseSieckenius. TAL—Template Authoring Language. Journal of the Brazilian 

Computer Society, v. 18, n. 3, p. 185–199, 2012. 

SOARES NETO, Carlos de Salles; SOARES, Luiz Fernando Gomes; SOUZA, 

Clarisse Sieckenius. The Nested Context Language reuse features. Journal of the 

Brazilian Computer Society, v. 16, n. 4, p. 229–245, nov. 2010. 

SONS, K. et al. xml3d.js: Architecture of a Polyfill implementation of XML3D. 

mar. 2013, [S.l: s.n.], mar. 2013. p. 17–24.  

SOPIN, Ivan; HAMZA-LUP, Felix G. Extending the Web3D: design of 

conventional GUI libraries in X3D. Web3D ’10, 2010, [S.l.]: ACM Press, 2010. p. 

137. Disponível em: <http://portal.acm.org/citation.cfm?doid=1836049.1836070>. 

Acesso em: 4 ago. 2014.  

SORENSEN, S.E.B.; HANSEN, P.S.; SORENSEN, N.L. Method for recording 

and viewing stereoscopic images in color using multichrome filters. . [S.l: s.n.]. 

Disponível em: <http://www.google.com/patents/US6687003>. , fev. 2004 

SOUZA, Daniel FL et al. Incorporating 3D technologies to the Brazilian DTV 

standard: a study of integration strategies based on middleware ginga. 2010, [S.l.]: 

ACM, 2010. p. 251–258. Disponível em: 

<http://dl.acm.org/citation.cfm?id=1809828>. Acesso em: 14 jul. 2014.  

SUN, Geng; HOLLIMAN, Nick. Evaluating methods for controlling depth 

perception in stereoscopic cinematography. 5 fev. 2009, [S.l: s.n.], 5 fev. 2009. p. 

72370I. Disponível em: 

<http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.80713

6>. Acesso em: 21 jul. 2015.  

SUTHERLAND, Ivan E. A Head-mounted Three Dimensional Display. AFIPS ’68 

(Fall, part I), 1968, New York, NY, USA. Anais... New York, NY, USA: ACM, 

1968. p. 757–764. Disponível em: 

<http://doi.acm.org/10.1145/1476589.1476686>.  

TAKAKI, Yasuhiro. Development of Super Multi-View Displays. ITE 

Transactions on Media Technology and Applications, v. 2, n. 1, p. 8–14, 2014. 

TAM, Wa James et al. Smoothing depth maps for improved steroscopic image 

quality. 25 out. 2004, [S.l: s.n.], 25 out. 2004. p. 162–172. Disponível em: 

<http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=852441>. 

Acesso em: 9 abr. 2014.  

TANIMOTO, Masayuki. FTV: Free-viewpoint Television. Signal Processing: 

Image Communication, v. 27, n. 6, p. 555–570, jul. 2012. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       113 

 

  

TSAI, Yi-Feng; YOUNG, Chung-Ping; KU, Chuan-Chun. Design and 

Implementation of a Flash Player Supporting Stereoscopic Image. jul. 2012, [S.l: 

s.n.], jul. 2012. p. 63–66.  

VÁZQUEZ, Carlos; TAM, Wa James; SPERANZA, Filippo. Stereoscopic 

imaging: filling disoccluded areas in depth image-based rendering. 18 out. 2006, 

[S.l: s.n.], 18 out. 2006. p. 63920D–63920D–12. Disponível em: 

<http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1294775>. 

Acesso em: 16 maio 2014.  

VETRO, Anthony. Frame compatible formats for 3D video distribution. set. 2010, 

[S.l.]: IEEE, set. 2010. p. 2405–2408. Disponível em: 

<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5651071>. 

Acesso em: 8 jul. 2015.  

WANG, Wenmin et al. Stereoscopic 3D Web: From idea to implementation. abr. 

2014, [S.l: s.n.], abr. 2014. p. 1440–1444.  

WHEATSTONE, C. Contributions to the Physiology of Vision. Part the First. On 

Some Remarkable, and Hitherto Unobserved, Phenomena of Binocular Vision. 

Philosophical Transactions of the Royal Society of London, v. 128, n. 0, p. 371–

394, 1 jan. 1838. 

WOO, Seunghyun; SUH, Hyojin; CHEON, Hosang. Reinforcement of spatial 

perception for stereoscopic 3d on mobile handsets. 2012, [S.l.]: ACM, 2012. p. 

2075–2080. Disponível em: <http://dl.acm.org/citation.cfm?id=2223755>. Acesso 

em: 8 abr. 2014.  

X3D Architecture and base components V3. International Standard. [S.l.]: ISO/IEC, 

4 nov. 2013. 

ZHANG, Jianlong et al. A rendering approach for stereoscopic web pages. 6 mar. 

2014, [S.l: s.n.], 6 mar. 2014. p. 90111O. Disponível em: 

<http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.20388

05>. Acesso em: 29 jul. 2014.  

ZHANG, Shaobo; ZHOU, Jun; SUN, Jun. 3D Webpage Rendering by Canvas. In: 

ZHANG, WENJUN et al. (Org.). . Advances on Digital Television and Wireless 

Multimedia Communications. Communications in Computer and Information 

Science. [S.l.]: Springer Berlin Heidelberg, 2012. v. 331. p. 411–417. Disponível 

em: <http://dx.doi.org/10.1007/978-3-642-34595-1_56>.  

  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       114 

 

  

Appendix A  
Fundamentals of 3D Video 

This appendix reviews the fundamentals of visual science for depth 

perception (Section A.1), their realization by 3D display 

technologies (Section A.2), and the main 3DV representations and 

formats (Section A.3). The goal is to summarize the main concepts that are useful 

to understand the remainder of the thesis; it does not intend to be exhaustive on the 

individual concepts presented here. A detailed discussion of these individual 

concepts is outside the scope of this thesis, and can be found in several other 

publications (DUFAUX; PESQUET-POPESCU; CAGNAZZO, 2013; MINOLI, 

2011; ZHU et al., 2013). For each specific topic, the reader will be referred to 

relevant literature, in which more detailed descriptions can be found. 

 

A.1.  
Human Perception of Depth 

Depth perception is our visual ability to perceive the distances of objects and 

the 3D world as a whole. What is fascinating about this ability is that our perception 

of the three-dimensionality is based on 2D images, projected onto our 

retinas (GOLDSTEIN, 2014). 

To explain how we perceive three-dimensional space, researchers have tried 

to identify which information is contained in a 2D image that enable us to perceive 

depth in a scene. That is called the “cue approach to depth perception”, or “cue 

theory”. The “cue theory” claims that the human visual system (HVS) achieves 

depth perception based on a variety of “cues” and that we learn the connection 

between a cue and the real depth through our previous experience with the 

environment. 

Over many years, researchers have identified the different cues we use to get 

depth information. A commonly used classification for depth cues (used in this 

thesis) is classifying them as monocular or binocular cues (see Figure 30). Another 

common way is to group them as physiological—those that we can feel—or 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       115 

 

  

psychological—those related to how we interpret what we see. These depth-cues 

classifications are not independent. For example, linear perspective (detailed in 

Subsection A.1.1) is psychological and monocular; convergence (detailed in 

Subsection A.1.2) is physiological and binocular. Figure 30 summarizes the main 

depth cues discussed in the remainder of this section. 

 

  

Figure 30 Depth cues classification according to (GOLDSTEIN, 2014). 

 

A.1.1.  
Monocular cues 

Monocular cues are those that we can perceive with only one eye. They 

can be further classified as accommodation, pictorial or motion-based. 

Accommodation is a physiological depth cue; pictorial and motion-based cues 

are psychological. 

Accommodation is related to the change in the focal length of eyes as one 

focuses on objects at various distances. Objects close to us require the eye’s 

lens to be more curved; we tighten muscles around our eyeballs to accomplish 

this effect. We subconsciously feel this and feed that information into our 

brain’s interpretation of what we see. 

Pictorial depth cues are depicted in flat 2D pictures, such as the figures 

printed in this thesis. Some of the most important pictorial cues are: 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       116 

 

  

Occlusion (also referred to as interposition) occurs when a foreground 

object partially blocks the view of background objects. Partially 

occluded objects are perceived to be farther away. 

Relative height According to this cue, objects that are below the horizon 

and have their base higher in the field of view are usually perceived 

to be more distant. 

Relative size This cue is related to the fact that close objects cover a larger 

visual angle on our retina; they appear bigger than more distant 

objects. Thus, if two objects are of equal sizes, the closer one will 

appear bigger. 

Familiar size is related to the fact that we already know some object 

sizes, e.g., trees, cars, and people. We compare the relative familiar 

sizes of objects in the same scene. 

Linear perspective Parallel lines merge into a single vanishing point on 

the horizon. We perceive points closer to the vanishing point as more 

distant. 

Atmospheric (or Aerial) perspective Objects at a greater distance have 

a lower contrast and saturation. Their color spectrum is also shifted 

towards blue due to light scattering in the atmosphere. 

Shadows and lighting The way an object casts shadows and how light 

falls on its surface can also be used to derive depth information.  

 

Motion-based cues are those that infer depth information created by 

relative movement between the observer and the observed object. Motion-based 

cues include motion parallax, deletion, and accretion. Motion parallax cues are 

some of the most important sources of depth information. They are related to 

the fact that objects closer to the observer move faster than farther ones. 

Moreover, as an observer moves sideways (and due to motion parallax and 

occlusion) some objects, or part of objects, become covered, and others become 

uncovered, what is known as deletion and accretion cues. Figure 31 illustrates 

some of the most important monocular cues. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       117 

 

  

 

Figure 31 Monocular depth cues. Adapted from: (LEBRETON et al., 

2014). 

 

A.1.2.  
Binocular cues 

Binocular cues depend on both eyes working together. Two important 

binocular cues are stereopsis (or binocular disparity) and convergence. 

Since our eyes are horizontally separated (by a distance of approximately 

6.3cm in a human adult), each eye has its own perspective of the world. Therefore, 

the same point in the world is projected onto slightly different positions on each 

eye’s retina; and each eye receives a slightly different image of the world. The 

distance between corresponding points in the images projected on each eye’s retina 

is known as retinal disparity. Based on retinal disparity, the brain fuses the left and 

right images received by each eye in a process known as stereopsis and infers the 

relative depth information. Figure 32 schematically shows the stereopsis process, 

and how the binocular view is used to produce a single 3D image. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       118 

 

  

 

Figure 32 Binocular view and 3D image reconstruction. 

When we look at nearby objects, our eyes move inward to converge on 

them. This is another important physiological source of information for depth 

perception, named convergence. HVS uses accommodation in combination with 

convergence, using the latter to correct the refraction power and to ensure clear 

image of the object being tracked (GOTCHEV et al., 2011). 

 

A.1.3.  
Depth cues and distance 

According to “cue theory” the relationship between depth cues and the depth 

perception of a 3D scene is mainly learned by experience. Although those cues are 

also relatively independent of each other7, they must be in harmony for a correct 

depth perception. When depth cues are not in agreement, the depth geometry of a 

scene will probably be unclear. Side effects, such as headaches and eyestrain, can 

also arise as a result of HVS’s efforts to understand an unnatural scene. 

It is also interesting to notice that depth cues have different importance for 

individual observers (HOWARD; ROGERS, 1996), and for varying distance 

between the viewer and the observed object (CUTTING; VISHTON, 1995). Figure 

                                                 
7 A famous test, created by Bela Julesz (1971), that subjectively shows the independence 

between binocular and monocular depth cues is the so-called “random-dot stereograms” (RDS). In 

the RDS test, a stereo pair of images of random dots is viewed with the aid of a stereoscope. While 

the RDS has no pictorial cue (they are random dots without any shadows, linear perspective, etc.), 

they can produce a sensation of depth, with points appearing to be in front of or behind the screen 

level. This test “proves” that binocular disparity alone is a strong, and independent, depth cue for 

HVS. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       119 

 

  

33 depicts the relationship between the depth cues and the distance between the 

viewer and the observed object. 

For close objects, binocular cues are often considered the most important 

ones. Stereopsis, for instance, is a strong depth cue for objects closer than one 

hundred meters (CUTTING; VISHTON, 1995). Convergence and accommodation 

are useful up to a distance of about an arm’s length, with convergence being the 

most effective of the two (GOTCHEV et al., 2011). Pictorial cues are relevant for 

images perceived at any distance. However, they tend to grow in importance 

for distant objects as other cues, such as accommodation and binocular, lose 

their importance. 

 

 

Figure 33 Depth perception as a set of separate visual “layers”. Adapted 

from (GOTCHEV et al., 2011). 

A complete discussion and measurements of the importance of each depth 

cue based on the relative distance between the viewer and observed objects can be 

found in (CUTTING; VISHTON, 1995). 

 

A.2.  
3D Displaying Technologies 

The 3D display is, perhaps, the most important component of a 3D media 

system. 3D displays directly affect the perceived QoE and ultimately provide the 

depth cues to the HVS. Moreover, the required 3D media representation 

technologies are also affected by display technologies. The remainder of this 

section reviews the most widely-used 3D display technologies (which are targeted 

by this thesis). Figure 34 shows a non-exhaustive classification of 3D displays. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       120 

 

  

 

Figure 34 A non-exhaustive classification of 3D displays. 

The proposals of Chapter 3 and 4 can work with both stereoscopic or 

binocular autostereoscopic displays. The proposals of Chapter 4 can also be used 

for composing multimedia applications for multi-view autostereoscopic 3D 

displays. 

 

A.2.1.  
Stereoscopic Displays (Two views, eyeglasses based) 

Stereoscopic 3D display technologies use special glasses, working as filters, 

to induce binocular disparity and convergence by providing different left-eye and 

right-eye images (HONG et al., 2011). The first stereoscopic device was proposed 

by C. Wheatstone in the 1830s (WHEATSTONE, 1838), as illustrated in Figure 35. 

Stereoscopic technologies have been used in television and movies since 

1920 (KIM et al., 2013) and are still the base of current commercial 3D Cinema 

and 3DTVs. 

 

3D Displays

Stereoscopic Autostereoscopic

Binocular Multi-view Volumetric Holographic

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       121 

 

  

 

Figure 35 The Wheatstone stereoscope. It includes two mirrors (A' and 

A) placed at a specific angle to reflect the left and right eye drawings (E' and 

E) towards the viewer's eyes. The viewer must place his head in front of the 

mirrors to view images using the stereoscope. Adapted 

from (WHEATSTONE, 1838). 

The most widely used techniques for filtering the left and right images (the 

so-called stereo-channel separation) are color-interlaced (or anaglyph), time-

multiplexed, and polarization-interlaced. Another important type of stereoscopic 

display (which has been gaining commercial momentum in the last years) is the 

head-mounted displays. In the remainder of this subsection, a brief survey of those 

technologies (which are presented schematically in Figure 36) is presented. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       122 

 

  

 
 

(a) (b) 

 

 

(c) (d) 

Figure 36 Different stereoscopic 3D techniques: (a) color-

interlaced (anaglyph); (b) polarization-interlaced; (c) time-multiplexed; and 

(d) head-mounted display. Adapted from (GENG, 2013). 

 

Color-interlaced (anaglyph) 

In the color-interlaced (or anaglyph) technique (Figure 36(a)), left- and right-

eye images are color-coded and combined into a single image, which can be printed 

or presented on a standard 2D display. When the combined image is viewed through 

glasses with lenses of corresponding colors, a 3D image is perceived. Various 

complementary color combinations have been used over the years. The most 

commonly used is the red/cyan combination. 

Anaglyph methods have the advantage of not requiring any special projection 

system or screen display. On the other hand, color rivalry and unpleasant after-

effects (transitory shifts in chromatic adaptation) can restrict its use (GENG, 2013). 

More recently, in the 2000s, Sorensen et al. (SORENSEN; HANSEN; 

SORENSEN, 2004) patented the ColorCode 3D stereo viewing system, which uses 

amber and blue filters. Unlike other anaglyph systems, ColorCode 3D is intended 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       123 

 

  

to provide perceived nearly full-color viewing to existing television and printed 

media. 

 

Polarization-interlaced Stereoscopic Display 

A polarization-interlaced 3D system (Figure 36(b)) sends images to the 

corresponding eyes through polarized lights—light waves that vibrate in only one 

direction. The display presents both images simultaneously, usually with interlaced 

pixel columns or lines disposition to interlace the polarized image in the display. 

Two polarization methods are commonly used: linear and circular. In the 

linear polarization method, one image is polarized so its vibration is vertical, 

whereas the other is polarized so its vibration is horizontal. In the circular 

polarization method, it is possible to use clockwise or counterclockwise 

polarization. Viewing both images simultaneous through corresponding (linear or 

circular) polarized glasses can filter the individual images for each corresponding-

eye. The results of both polarization methods are similar, except that in the circular 

method the viewer can tilt his head and still maintain left/right separation (although 

stereoscopic image fusion will be lost due to the mismatch between the eye plane 

and the original camera plane). 

Polarization-based 3D displays are commercially known as passive devices, 

since there are no electronics involved in the filter glasses. The images can be linear 

or circular polarized. Compared to other stereoscopic techniques, a polarized 3D 

system provides full-color, flicker-free images, and uses inexpensive glasses that 

do not require synchronization between devices. However, it cannot provide full 

resolution because the right- and left-view images are presented 

simultaneously (KIM et al., 2013). 

 

Time-multiplexed Stereoscopic Display 

In the time-multiplexed stereoscopic displays (Figure 36(c)) the left and right 

views alternates on the display device while a blocking mechanism is required to 

prevent the left eye from seeing the right eye’s view and vice versa. This kind of 

display exploit the so-called “persistence of vision”, also known as the “memory 

effect”. Such effect is related to the fact that the HVS is capable of merging the 

constituents of a stereo pair across a time lag of up to 50 ms (GENG, 2013). When 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       124 

 

  

a system rapidly, and alternating, presents a left- and right- image to each human 

eye, the HVS merges those consecutive images into one 3D image.  

A commonly used technology for time-multiplexed stereoscopic displays is 

the LC (Liquid Crystal) shutter. In this technology, the user wears LC shutter 

glasses that can block and unblock the observer’s left and right eye viewing 

separately. The screen must show the left and right image as different frames 

multiplexed in time. The process requires a mechanism that synchronizes the screen 

and the LC shutter glasses. Such mechanism must ensure that, when the display 

presents the left frame, the left eye’s shutter is open and the right eye’s shutter is 

blocked, and vice-versa. 

Time-multiplexed stereoscopic displays are commercially known as active 

systems. Since the left-eye and right-eye images are presented in different frames 

using all pixels on the display device, technologies based on LC shutter glasses 

have no resolution degradation when displaying 3D images. 

 

Head-Mounted Displays 

In a Head-Mounted Display (HMD) (SUTHERLAND, 1968) (Figure 36(d)), 

the user wears a helmet or glasses with two displays—e.g. small LCD or organic 

light-emitting devices (OLED)—with magnifying lenses, one for each eye (GENG, 

2013). This technology can be used to show stereo films, images, or games, and can 

be used to create virtual displays. When coupled with head-tracking devices, it is 

also possible to provide users with a “look around” effect, which is very useful 

when immersing users in virtual worlds. Thanks to the continuing miniaturization 

of electronics, these devices are beginning to become available at more reasonable 

costs. 

 

A.2.2.  
Binocular Autostereoscopic 3D displays (Two views, no glasses 
required) 

There are some limitations with stereoscopic 3D displays, e.g., the use of 

glasses for filtering the left and right images is clearly an inconvenience. 

Autostereoscopic 3D displays provide 3D perception without requiring glasses or 

other headgear to provide 3D perception (DODGSON, NEIL A., 2005). They are 

usually built with additional optical elements aligned on the surface of the screen, 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       125 

 

  

and operate by “casting” different images towards each eye of the observer to create 

binocular depth cues (GOTCHEV et al., 2011). In its fundamental meaning, the 

term “autostereo” refers to a vast range of technologies, including holographic, 

volumetric, and integral imaging displays8. In the 3DTV industry, however, the 

“autostereoscopic displays” has been mainly used to refer to two technologies: 

parallax barriers and lenticular sheets. 

In the parallax barrier method (Figure 37(left)), a sense of depth arises from 

the fact that narrow slits separated by opaque barriers in front of a screen enable 

each eye to see different sets of pixels. This is essentially a mask with openings and 

closings that blocks the light in certain directions (GOTCHEV et al., 2011). 

Lenticular sheets (Figure 37(right)) are composed of small lenses with special 

shapes, which refract the light in different directions. The lenses shapes are 

cylindrical or spherical in order to enable a proper light redirection. 

 

 

Figure 37 Light redirecting in binocular autostereoscopic displays: 

parallax barriers (left) and lenticular sheets (right). (Source: 

https://en.wikipedia.org/wiki/Autostereoscopy). 

The obvious advantage of auto-stereoscopic displays is that they do not 

require the use of glasses. However, both aforementioned technologies have certain 

limitations. One of the main drawbacks is that the user’s eyes must be in a specific 

position, or “sweet spot”, so that the light beams can exactly reach the right and left 

human eyes. Moving outside this “sweet spot”, the user might catch the opposite 

view and experience the “pseudoscopy” effect. Non-ideal separation between the 

views creates inter-view crosstalk, which results in ghost-like images. 

Because of the aforementioned restrictions, binocular autostereoscopic 

displays have been used mainly in mobile mono-user displays. Another possibility 

that can improve autostereoscopic viewing on mobile devices is the use of 

                                                 
8 Those technologies are out of the scope of this thesis. Interested readers are referred to 

recent surveys on 3D technologies (KIM et al., 2013) (GENG, 2013). 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       126 

 

  

head/eye-tracking technologies, which can be used to dynamically adapt the light 

beams to the position of the eyes. 

 

A.2.3.  
Multi-view Displays (Many views, no glasses required) 

An extension of binocular autostereoscopic displays is the so-called multi-

view display. Multi-view displays are autostereoscopic displays that can provide 

more than one viewpoint (Figure 38). Each viewpoint allows for stereoscopic depth 

perception; at some level, multi-view displays are able to provide motion-based 

depth cues. The previously discussed technologies (parallax barrier and lenticular 

sheets) can be extended to provide those additional views. Commonly available 

multi-view displays provide 5, 9, or 28 views. 

 

 

Figure 38 Principles of multi-view autostereoscopic 3D displays. As the 

user moves his head, different light beams, i.e., different viewpoint images, are 

perceived. (a) In the real world, the number of viewpoints is infinite; (b) Multi-

view 3D displays provide a finite number of viewpoints of the world, which can 

be (c) captured from multi camera arrays. Adapted from (DODGSON, 2002). 

More recently, super-multiview (SMV) displays (TAKAKI, 2014) have been 

proposed. In SMV displays, the interval between viewpoints is reduced, so it is 

smaller than the pupil diameter of the eye. This has the potential to solve the 

vergence-accommodation conflict, providing a continuous horizontal parallax. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       127 

 

  

A.3.  
3D Media Formats 

It is obvious that efficient representation is needed for successful 3DV 

applications. 3DV representation is closely intertwined with other components of 

3DV systems: content acquisition, transmission, rendering, and display. For 

instance, stereoscopic 3D displays require only one stereo-pair, i.e., two views of 

the scene. Multi-view autostereoscopic displays, on the other hand, may require 

many stereo-pairs. Moreover, applications that use head-tracking techniques, even 

though presenting only a stereo-pair at each moment, may also require different 

views of the scene since user can dynamically change his/her viewpoint. 

Some attributes are very important for a 3DV representation. First, it is 

important to decouple data representation from content acquisition and display. 

More specifically, 3DV formats should allow stereo devices to cope with varying 

display characteristics and viewing conditions by means of advanced stereoscopic 

display processing. For instance, controlling the baseline stereo distance to adjust 

depth perception can improve QoE and visual comfort. With the emergence of high-

quality autostereoscopic multi-view displays, 3DV formats should enable the 

synthesis of many high-quality views. Moreover, the required bit rate should remain 

decoupled from the number of views, which calls for efficient compression. 

This section details some of the most widely-used 3DV representations (some 

of them are briefly presented in Chapter 1) and discusses how they are related the 

proposals in this thesis. Figure 1 shows examples of 3D video representations. 

 

Conventional Stereo Video (CSV) 

CSV is the most well-developed and simplest 3D video representation. It is 

the de facto standard in current 3D Cinema and commercial 3DTVs. CSV codifies 

texture (color) information for the left and right eyes (Figure 1(a)), which is named 

a stereo-pair. Such stereo-pair is intended to be directly presented by stereoscopic 

3D (S3D) displays. The easiest way to capture CSV images is to use two cameras, 

horizontally separated by approximately the distance between our two eyes. 

A common way to codify a CSV video is using the so-called frame-

compatible approach. In this approach, CSV videos are codified as a regular 2D 

videos that multiplexes the left and right views into a single frame or sequence of 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       128 

 

  

frames (VETRO, 2010). Common frame-compatible approaches are side-by-

side (SbS), top-and-bottom (TaB), checkerboard, and row and column 

interlaced (see Figure 39). Of these, top–bottom and side-by-side formats are the 

most common (CAGNAZZO; PESQUET-POPESCU; DUFAUX, 2013). 

 

 

Figure 39 Frame-compatible approaches to codify CSV: (a) top-and-

bottom; (b) side-by-side; (c) checkerboard; (d) row interlaced; and (e) column 

interlaced (◉ denotes samples from the first view; ○ denotes samples from the 

second view). 

A derivative of CSV is the Mixed Scene Resolution (MSR) 

format (SEUNTIENS; MEESTERS; IJSSELSTEIJN, 2006). The concept of MSR 

was introduced by (PERKINS, 1992). In the MSR, one of the two sequences of the 

stereo-pair is sub-sampled. That representation is based on theories of binocular 

suppression, in which it is assumed that the binocular perception of a stereo image 

pair is dominated by the high-quality component (LEVELT, 1965). 

The main drawback of CSV-based formats is that they double the amount of 

data to be stored and transmitted. Moreover, the lack of explicit geometry 

information of the scene (in both CSV and MSR) makes it hard to implement depth 

re-scaling features, which is a feature required for providing good QoE in different 

3DV viewing conditions. 

The proposals in Chapter 3 are related to the CSV frame-compatible approach 

for 3DV. They allow for extending 2D-only multimedia applications to support 

CSV-based media codified as side-by-side or top-bottom formats. The proposed 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       129 

 

  

conversion process produces a multimedia scene specification that emulates one of 

the frame-compatible approaches to allow previous 2D-only multimedia 

applications to be presented on S3D displays taking advantage of the real depth 

information provided by these displays. 

 

2D plus depth 

As mentioned in Chapter 1, 2D plus depth (or 2D+Z) is a format in which the 

geometry of the scene is explicitly provided through a depth frame (or depth map) 

which is synchronized with the main (texture) video (Figure 1(b)). 

The depth frame can be acquired through computer vision techniques (e.g. by 

using one or more original captured texture videos), directly captured with special 

cameras (such as time-of-flight), or artistically created. For videos based on 

synthetic content, the depth map can be synthetically acquired by rendering the 

scene with common computer graphics techniques (e.g., ray-tracing). 

2D+Z format has the advantage of providing flexibility to various phases of 

a 3D media chain, allowing the adaptation of the final depth perception to different 

viewing conditions, keeping backward compatibility with 2D displays, and 

supporting the generation of additional views through Depth-Image-Based 

Rendering (DIBR) (FEHN, 2004) techniques. 2D+Z format has been standardized 

by MPEG in the MPEG-C part 3 (BOURGE; GOBERT; BRULS, 2006). 

However, 2D+Z has its own drawbacks. The quality of the generated views 

is directed related to the quality of the provided depth maps. The process of 

acquiring high-quality depth maps is a challenge. Many research efforts have been 

done in recent years to improve these methods. In addition, by definition, 2D+Z 

lacks occlusion information. 

 

Multi-view video (MVV) 

MVV is a straightforward extension of CSV, in which several views can be 

synchronously acquired (Figure 1(c)). 

It has the advantage of providing all information needed to be presented on a 

multi-view 3D display. However, just as in CSV, it lacks flexibility and cannot be 

easily adapted to different viewing conditions. Moreover, as the number of needed 

views increases, the amount of information to be transmitted will also 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       130 

 

  

increase (linearly). For most applications, MVV is impractical to use in current 

network infrastructures. 

 

Multi-view video plus depth (MVD) 

MVD is an extension of the 2D+Z format, allowing a set of 2D plus depth 

view information, for different reference cameras (Figure 1(d)). The client is able 

to generate additional views between reference cameras. Compared to the 2D plus 

depth format, MVD offers higher field-of-view (still providing good rendering 

quality). 

The most common approach for acquiring MVD is to use MVV as an input 

and to use computer vision techniques to extract depth information from them. 

 

Layered-depth video (LDV) 

LDV is an extension of the 2D plus depth format. It is based on the concept 

of Layered-Depth-Image (LDI) (SHADE et al., 1998). LDV tries to avoid the 

redundancy information in MVD by transmitting only one central view together 

with additional layers. Those additional layers contain hidden texture and depth 

information values. In this format, a picture no longer consists of a single layer of 

pixels; it may contain several layers, with multiple associated depth data. Figure 40 

provides an example of LDI (without depth layers). 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       131 

 

  

 

Figure 40 Representation of a layered-depth image. Left column, top: 3D 

scene; bottom: scheme of lines of sight. Right column, top: front layer; middle: 

second layer; bottom: last layer. Depth layers are not shown. (CAGNAZZO; 

PESQUET-POPESCU; DUFAUX, 2013). 

Theoretically, each LDV/LDI frame can contain an infinite number of layers. 

In practice, however, they are usually restricted to a small number. A common 

approach has been to use only one occlusion layer9(Figure 1(e)). A further 

optimization, which has the potential to improve coding performance, is to 

represent only the residual (difference) information between the main layer and the 

additional occlusion layer (see Figure 41). 

 

Figure 41 Differences between MVD and LDV. On the left side, MVD is 

shown for three cameras in a simple scene. On the right hand side, a simplified 

LDV representation (only one additional layer and represents only the 

residual information) is displayed. Adapted from (BARTCZAK et al., 2011). 

 

                                                 
9 This format has been successfully integrated into the Philips Wowvx® auto-stereoscopic 

3D displays, in which it is named Declipse format (BARENBRUG, 2009). 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       132 

 

  

Since the LDV format contains explicit depth and texture for occluded 

information, it allows for the generation of novel viewpoints for stereoscopic and 

multi-view displays, with better precision and higher performance than the 2D+Z 

format. This is because because the client may not need to infer the occluded 

regions (BARTCZAK et al., 2011). 

LDV has been used as an alternative to the MVD format, because the former 

is believed to achieve better compression performance. A common approach to 

generate the occlusion layers of LDV is to use the multiple views available in 

MVD (CHENG; SUN; YANG, 2007) (BARTCZAK et al., 2011), a process that 

can be performed at the server side. 

In this thesis, the concept of LDI/LDV is used to provide a software rendering 

architecture to multimedia players that supports depth-based 3D media. In addition, 

extensions to multimedia languages are provided to allow depth and occlusion 

information in LDV media. Compared to previous solutions, the use of LDI/LDV 

during the composition of scenes allows keeping occlusion information of all media 

objects while composing the multimedia scene. This is extremely useful in the 

process of filling the holes generated by 3D warping. 

 

A.4.  
Geometry of Stereoscopic 3D Displays 

Two-view 3D displays, such as stereoscopic or binocular autostereoscopic 

displays, provide the user with two images (a stereo-pair). Each image on a stereo-

pair is almost the same, but may include some offset between the same point in the 

left and right views. This section derives the relationship between the perception of 

depth and a stereo-pair presented on a S3D display. To do that, Figure 42 illustrates 

the viewing parameters of stereoscopic images on S3D displays. From Figure 42, it 

is possible to see the disparities presented to the observer depend on: 

(i) the screen parallax (𝑃), i.e., the horizontal linear distance between 

common (homologous) points on the display surface; 

(ii) the distance between the observer and the screen (𝑉); and  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       133 

 

  

(iii) the observer's eye separation (𝐸), also known as interocular or inter-

pupillary distance (IPD)10. 

 

  

Figure 42 Stereoscopic viewing parameters, with an image point 

projected behind the screen, i.e., with positive parallax. 

The observed depth 𝑍𝑖 of an image point projected with screen parallax 𝑃 is 

equal to the sum of the distance between the observer and the screen, 𝑉, plus an 

offset term, 𝑍𝑚. Using similar triangles, we obtain the following equation: 

 
𝑃

𝑍𝑚
=

𝐸

𝑉 + 𝑍𝑚
 (5) 

 

From which we can deduce 𝑍𝑚 as: 

 𝑍𝑚 =
𝑃𝑉

𝐸 − 𝑃
 (6) 

 

Since the observed depth is equal to 𝑉 + 𝑍𝑚, it is possible to express 𝑍𝑖 as: 

 𝑍𝑖 = 𝑉 +
𝑃𝑉

𝐸 − 𝑃
 (7) 

 

which can be reduced to: 

 𝑍𝑖 = 𝑉
𝐸

𝐸 − 𝑃
 (8) 

 

Based on Equation (8), some interesting conclusions follow: 

                                                 
10 In adult males, IPD usually ranges from 5.77cm to 6.69cm, with a median of 

6.32cm (IJSSELSTEIJIN; SEUNTIENS; MEESTERS, 2001). 6.5cm is usually taken as the average 

IPD. However, it is important to produce stereoscopic content that is comfortable to people with 

smaller IPD. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       134 

 

  

(i) as the observer moves closer to the screen (i.e., 𝑉 decreases), the 

perceived depth for a same amount of parallax decreases; 

(ii) reducing the screen size (and thus of parallax) at a given viewing 

distance also decreases the perception of depth; 

(iii) when the parallax 𝑃 is equal to zero, the perceived depth is equal to 

the screen distance, 𝑉, that is, the object of interest will be seen at the 

screen plane. That configuration is named Zero Parallax (Figure 

43(b)). 

(iv) as parallax becomes negative, the image is seen in front of the screen 

plane (see Figure 43), and the viewer has to look cross-eyed, 

potentially making binocular fusion slightly uncomfortable, 

depending on the amount of negative parallax.  

(v) when 𝑃 = 𝐸, the observer's eyes are looking straight ahead, which 

corresponds to looking at an image infinitely far away. 

(vi) there is no visible point in increasing the on-screen parallax (𝑃) 

beyond eye separation (E). Moreover, if the eyes need to diverge (𝑃 >

𝐸) to fuse an image, this requires unusual muscular effort, which may 

cause discomfort. 

 

 

                      (a)                           (b)                            (c) 

Figure 43 Relationship between different types of parallaxes and depth 

perception. (a) positive parallax; (b) zero parallax; (c) negative parallax. 

  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       135 

 

  

Appendix B  
Depth-based Layouts for Multimedia Applications 

B.1.  
Introduction 

Layout managers implement policies (or layout templates) defining how 

graphical components are positioned in containers (ROTARD, 2005), thus helping 

to provide good-looking software interface for different display sizes and viewing 

conditions. Layout managers are used in many graphical user interface (GUI) 

toolkits. In addition, they are useful when presenting multimedia (MM) 

applications, e.g., for the Web or Digital TV (DTV). Extensions to support layout 

templates have been integrated into standard multimedia languages (ROTARD, 

2005) (AMORIM; DOS SANTOS; MUCHALUAT-SAADE, 2013) (ETEMAD; 

JR; ATANASSOV, 2014). However, they are usually restricted to 2D-only layers, 

even when discussed in the scope of 3D multimedia languages. As argued by Sopin 

and Hamza-Lup (SOPIN; HAMZA-LUP, 2010), the reason probably comes from 

the fact that people are more acquainted with planar interface layouts. Moreover, 

the amount of different possibilities in organizing the components in a complete 3D 

coordinate system makes the definition of 3D layout managers non-trivial. 

Nevertheless, between 2D-only and complete 3D spatial layouts there is the 

alternative of representing multimedia scenes with a 2D+depth (or 2.5D, or 2D with 

seeming depth) coordinate system (LE FEUVRE, 2010) (AZEVEDO; SOARES, 

2013). As suggested by Cockburn and McKenzie’s experiments (COCKBURN; 

MCKENZIE, 2002), 2D or 2D+depth formats are usually more effective to user 

interfaces than complete 3D formats. Furthermore, 2D+depth format is usual in 

3DTV systems for encoding the main video content, known as video-plus-

depth (MÜLLER; MERKLE; WIEGAND, 2011). For those videos, the depth 

information is encoded in a depth frame (synchronized with the texture frame) as a 

normalized value related to the true depth distance between each pixel and the 

viewer (Section A.3 details that format). Commonly, zero (or black) means far 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       136 

 

  

from the viewer (inside the display), whereas 255 (or white) means close to the 

viewer. 

Providing a 2D+depth coordinate system for multimedia applications can be 

particularly useful when presenting them on 3D displays, such as stereoscopic and 

multi-view auto-stereoscopic (BENZIE et al., 2007). In doing this, additional 

presentation effects can be achieved. Per-component and/or per-pixel depth 

information could be associated with each individual component of a scene. Not 

only objects encoded with explicit per-pixel depth information, such as video-plus-

depth or image-plus-depth (LE FEUVRE, 2010), could compose a scene, but also 

2D media objects augmented with depth through the language constructions. 

Moreover, multimedia applications could be allowed to control depth information 

during execution, allowing for animations and additional artistic effects, such as 

objects popping in and out of the screen plane. Besides achieving a more natural 

perception, the use of a depth dimension could provide genuine user interfaces, for 

example, by reinforcing spatial perception, emphasizing elements of the interface, 

or improving the feedback from user actions (WOO; SUH; CHEON, 2012). Figure 

44 shows an example of a 2D+depth multimedia application running on a 

stereoscopic TV. 

 

 

Figure 44 Example of a stereoscopic 2D+depth multimedia 

application (in horizontal interlaced mode). 

Current layout-manager and layout-template approaches that only focus on 

2D coordinate systems are unsatisfactory to produce appealing multimedia 

applications to be presented on 3D displays. The current available options do not 

take advantage of depth information that 2D+depth multimedia applications are 

able to control. Aiming at easing the development of 2D+depth multimedia 

applications for 3D displays, this appendix proposes the concept of depth-based 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       137 

 

  

layouts, i.e., layout templates that organize the graphical components on a 

2D+depth space. It identifies some common depth-based layout templates that can 

be useful for a broad range of 2D+depth multimedia applications, and discusses a 

template processor implementation to support these layouts in the scope of standard 

multimedia authoring languages and multimedia template languages extended with 

2D+depth support. The layout template processor implementation proposed in this 

appendix can be extended through a well-defined API to support new layout 

templates besides the pre-defined ones identified here. 

The remainder of the appendix is structured as follows. Section B.2 discusses 

work related to the proposal of depth-based templates. Section B.3 details the 

concept of 2D+depth multimedia applications and presents previous proposals 

intending the low-level specification of these applications in the scope of standard 

multimedia languages. Section B.4 introduces our proposal, discusses some depth-

based layout templates, and presents an overview of the proposed depth-based 

layout template processor. Finally, Section B.5 is reserved for conclusions and 

future work. 

 

B.2.  
Related Work 

Most of current GUI toolkits provide basic layout managers for organizing 

graphical components in a 2D-only space, following a pre-defined layout template, 

such as box (horizontal or vertical), flow, and grid layouts. Figure 45 shows 

examples of these layout managers. Box layouts put their components into a single 

line (horizontal) or column (vertical). Flow layouts put their components into a 

single line, starting a new one if the width of the container is not enough to contain 

a new object. Grid layouts display components on a grid with a predefined number 

of columns and lines. Spacing between the objects can also be controlled through 

parameters. Since most of these layout managers are in the scope of general purpose 

programming languages, they can be extended, through a well-defined API. 

Graphic designers are also able to create complex GUIs by adding components that 

follow layout templates to containers, which also follow layout templates, thus 

creating a hierarchy of layout templates. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       138 

 

  

                     

             (a)                                                       (b) 

 

(c) 

Figure 45 2D-only layout templates examples: (a) box layout; (b) grid 

layout; and (c) flow layout. 

XML is commonly used as a declarative approach to describe the relationship 

between layout templates and graphical components. Some examples include Qt UI 

language11 and Layout Android language12. The XML document is interpreted 

during run-time, or preprocessed, to generate the final source code. In the Qt UI 

case, XML files are used to generate C++ source code. 

On the one hand, our proposal is similar to the one used in GUI toolkits, since 

it also proposes some basic layout templates. On the other hand, our layout 

templates are in the context of 2D+depth multimedia applications, targeting 3D 

displays. Moreover, it provides an XML notation used as input to generate the final 

multimedia application. 

2D layout template approaches have also been integrated into standard 

multimedia authoring languages, such as SVG, NCL, and HTML. For instance, 

Rotard (ROTARD, 2005) proposes flow and grid layouts for SVG, whereas 

Amorim et al. (AMORIM; DOS SANTOS; MUCHALUAT-SAADE, 2013) 

propose the same template layouts in the context of NCL. As the HTML5 

ecosystem evolves to become a platform for traditional GUIs, it is also possible to 

identify many works aiming at including more advanced grid-based layouts as both 

JavaScript toolkits and CSS extensions (ETEMAD; JR; ATANASSOV, 2014). 

However, none of the aforementioned work targets either 3D displays or systems 

with a 2D+depth coordinate support. In contrast, this appendix targets 2D+depth 

coordinate support that can be used to extend current authoring languages or to be 

                                                 
11 http://qt-project.org/doc/qt-4.8/designer-ui-file-format.html 
12 http://developer.android.com/guide/topics/ui/declaring-layout.html 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       139 

 

  

preprocessed generating new documents in these languages (such as proposed in 

Chapter 3 of this thesis), using their low-level depth support. 

Instead of using pre-defined layout templates with minor parameters that are 

easily controllable, some approaches use lower-level constraints to define 2D-only 

layouts. The proposals of Borning et al. (BORNING; LIN; MARRIOTT, 2000), 

Jacobs et al. (JACOBS et al., 2004), Brados et al. (BADROS et al., 2001), and 

Lumley et al. (LUMLEY, JOHN; GIMSON; REES, 2005) (LUMLEY, JOHN W., 

2013) are examples. Whereas very expressive, these constraint-based approaches 

are harder to use when compared to the layout templates. In this appendix, we focus 

mainly on providing higher-level definitions of depth-based layout templates, 

which are translated or interpreted. Indeed, constraint-based approaches could also 

be used to program the depth-based layouts proposed here. However, such 

discussion is out of the scope of this appendix. 

The constraint-based layout approach of Jacobs et al. (JACOBS et al., 2004) 

uses z-order data in graphical components with a different semantic from that used 

in our proposal. Since grid-based page design often includes overlapping elements, 

or regions that appear to be cut out from other elements, their system uses z-order 

information to produce effects like wrap text around figures, etc. Since we are 

targeting 3D displays, we use true depth information to arrange graphical 

components. 

More similar to this work, Sopin and Hamza-Lup’s proposal (SOPIN; 

HAMZA-LUP, 2010) use the concept of layouts in a 2D GUI with seeming depth 

information. They have proposed a library to create conventional GUI components 

in X3D (“X3D Architecture and base components V3”, 2013), and have recognized 

the importance of 2D and 2D+depth coordinate systems in creating GUIs. Their 

approach allows different graphical components to have different depth (different 

layers). However, their layout templates (Border, Box, Grid, and Flow) do not 

support depth information for each individual component. Layout templates are 

restricted to only one layer, i.e., the same depth for all components in the same 

layout container. In contrast, we propose layout templates that organize components 

in a container such that each component can have a different depth. 

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       140 

 

  

B.3.  
Low-level 2D+Depth Support in Multimedia Languages 

Low-level extensions to multimedia languages aiming at supporting 3D 

displays are not novelties. However, with the boom of 3D-stereoscopic 

technologies in recent years, there is a growing interest in them. Since most of 3D 

displays currently available are stereoscopic-only, some approaches focus on these 

displays. For instance, there has been an effort in developing a W3C draft aiming 

at extending CSS to support stereoscopic presentations (HANG; LEE, 2012). Also 

based on CSS, Chen et al. (CHEN, QINSHUI et al., 2014) propose a basic approach 

to support stereoscopic images and a per-component depth for each component in 

an HTML page. Liu et al. (LIU; WANG; WANG, 2014) propose similar extensions 

for SVG. These three works focus on supporting stereoscopic-only displays, and do 

not mention multi-view autostereoscopic displays. Moreover, the proposal of 

Chapter 3 allow for supporting stereoscopic effects at the application-level for the 

NCL language (AZEVEDO; LIMA; SOARES, 2015).  

By using the per-component depth association, it is possible to attach depth 

information to a media object, specifying how far it is from the viewer when 

rendered on a 3D display. Since most video-plus-depth codification schemas uses 

a quantized grayscale (0-255), a value in this range can be the one associated to a 

component depth, as proposed by Le Feuvre (LE FEUVRE, 2010). Double values 

can also be used to define the depth of media components. For instance, the value 

could be in the range [-1.0, 1.0], where 1.0 means closer to the viewer and -1.0 far 

from him/her (inside the display), or vice-versa. This is the solution provided by 

Chen et al. and Azevedo and Soares (AZEVEDO; SOARES, 2013) (and the 

Chapter 3 of this thesis), for CSS and NCL, respectively. 

The high-level depth-based layouts proposed in this appendix can benefit the 

languages discussed in this section, or any other multimedia representation that uses 

2D+depth coordinate system. Two solutions can be adopted to integrate the depth-

based layouts into these languages. First, language players could be natively 

extended to support the new high-level layout primitives. Alternatively, a pre-

processing step can be used to translate the high-level layout templates to the low-

level depth primitives provided by the languages. The second alternative is used in 

this appendix, and detailed in Section B.4.1. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       141 

 

  

 

B.4.  
High-level Depth-Based Layouts 

The high-level layout templates proposed are defined using XML. To allow 

for a layout template instance to be reused in different multimedia applications, a 

solution based on style-content separation is adopted, as in XSLT, CSS, etc. Each 

layout template instance acts as a container (possibly containing other recursive 

containers), where graphical elements must be inserted. A heuristic algorithm 

resizes and disposes layout child components on the 2D and depth axes. 

The language discussed in this section is an extension of the XML language 

previously defined by Amorim et al. (AMORIM; DOS SANTOS; MUCHALUAT-

SAADE, 2013) to support 2D-only (Flow and Grid) layout types. The XML 

elements are in the lay XML namespace. The <layout> is the root element that 

defines a container instance. A specific layout template is given by the attribute type 

of the <layout> element. Optional spatial attributes, such as top, left, width, and 

height define the bounding-box of a <layout> element. If these attributes are not 

defined, they can be inferred based on child components’ spatial attributes as 

discussed afterwards. Other attributes can also be supported and their name and 

possible values are dependent on the layout type (type attribute) in use. 

The <layout> element can have <item> and other <layout> elements as 

children. The id attribute of an <item> element is unique in the document and can 

be used, by a host language, to associate graphical elements to the container, 

through lay:layoutItem attribute. For instance, if the template defines the <layout> 

element: 

<lay:layout id="mediaContainer" type="flow" 

            width="400px" height="400px"> 

  <lay:item id="VMC" …/> 

  <lay:item id="XYZ" …/> 

  ... 

</lay:layout> 

 

and this layout template is referred in the following NCL document: 

<body ...> 

  <media id="video" lay:layoutItem="VMC"/> 

  <media id="image" lay:layoutItem="XYZ"/> 

  <media id="text" lay:layoutItem="VMC"/> 

  <media id="lua" /> 

  ... 

</body> 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       142 

 

  

 

 

the “video”, “text”, and “image” <media> elements will be inserted into the 

“mediaContainer” layout container, in this order, whereas the “lua” <media> 

element will not be inserted. 

An <item> element can also specify spatial attributes to be inherited by its 

associated graphical elements. The template heuristic can consider the spatial 

attributes of the container and the spatial information of its child components to 

determine the exact position and dimension of each child component. The spatial 

information of child graphical elements used in the heuristic estimates can be 

obtained from the <item> elements associated to the graphical elements, or from 

the host language that defines these elements. Since a <layout> element can contain 

another <layout> element, the spatial information of child layouts can be obtained 

from the child layout specification, if it is specified, otherwise from its child 

components’ spatial information, recursively. The exact position and dimension (in 

the 2D+depth coordinate system) of each child component is also evaluated 

recursively, but now from the outermost to the innermost layout container. 

The basic depth-based layouts proposed here are: Stack, DepthFlow, 

DepthGrid, and Carousel. Unlike 2D-only layouts, the bounding-box that defines a 

container also includes a min-depth, and max-depth attributes. Table 2 summarizes 

the proposed depth-based layouts and presents their attributes. Figure 46 shows 

examples of the proposed depth-based layouts. In what follows, their heuristics are 

detailed.  

 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       143 

 

  

Depth-based 

layout type 

Attributes Possible values 

stack align 
orientation 

order 

“left”, “right”, “center” 
“left-to-right”, “right-to-left”, “bottom-to-top”, “top-to-bottom”, “diagonal” 

“front-to-back”, “back-to-front” 

depthFlow  align 
orientation 

order 

“left”, “right, “center”, “alternate-lr”, “alternate-rl” 
“vertical”, “horizontal” 

“front-to-back”, “back-to-front” 

depthGrid rows 

columns  
cell-depth(X, Y) 

integer 

integer 
double between  [-1.0, 1.0] 

carousel orientation 

rotation 
x-radius 

y-radius 

“vertical”, “horizontal” 

“clockwise”, “counterclockwise” 
px or % 

px or % 

 Common attributes  Possible values 

 width 
height 

min-depth 

max-depth 
resize-components 

px or % 
px or % 

double between [-1.0,1.0] 

double between [-1.0,1.0] 
“true”, “false”, “same” 

Table 2 List of depth-based layouts currently integrated in our layout 

processor, their parameters, and possible values. 

 

                          

           (a)                               (b)                           (c)                           (d) 

Figure 46 Examples of depth-based layout templates: (a) Stack layout; 

(b) DepthFlow layout; (c) DepthGrid layout; and (d) Carousel layout. 

Stack Layout defines that graphical components in the container must be 

displayed one over the other, with some displacement on their horizontal or vertical 

positions. The last inserted element is the top-most one (i.e. it has the greatest depth 

attribute). The size of the layout container (width, height) and its minimum and 

maximum depth information (depth-min, depth-max) must be specified through 

<layout> attributes. The orientation attribute specifies how the Stack Layout’s 

algorithm organizes components inside the container. Figure 46(a) shows examples 

of Stack layout instances. As in all images shown in this section, depth information 

of media components is coded in grayscale (255 meaning closer to user, and 0 far 

away from him). Components are inserted into the layout container in ascending 

order. The depth of each component is set linearly from depth-min to depth-max. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       144 

 

  

The following source code shows an example of Stack layout template 

specification.  

<lay:layout id="stackLayout" type="Stack"  

            width="400px" height="400px" 

            min-depth="-0.5" max-depth="0.5" 

            orientation="left-to-right" 

            align="center"> 

 

  <lay:item id="VMC" width="200px" height="200px"/> 

</lay:layout> 

 

The container has a 2D dimension of 400x400px. All elements inside the 

container will be linearly spaced on the depth axis from -0.5 to 0.5. 

DepthFlow Layout is an extension of the 2D-only Flow layout. As in its 2D-

counterpart, components are inserted in order on the same line, while there is 

enough space on the line. If there is not enough space to insert a component, a new 

line is inserted, below and in front (i.e. with a greater depth attribute) of the previous 

one, as shown in Figure 46(b). Each line has a different depth value. Therefore, they 

are rendered at a different distance from the viewer. As usual, the min- and max-

depth of the DepthFlow layout container can be specified as attribute values. The 

DepthFlow’s heuristic algorithm guarantees that the position of the components 

follows such constraints and that the line’s depth information grows linearly. The 

align attribute specifies how objects are aligned on each line. Possible values 

include “center”, “left”, and “right”. The default value is “center”. Moreover, if the 

attribute orientation is equal to “vertical”, it is possible to adapt the DepthFlow 

behavior to work with columns instead of lines. 

DepthGrid Layout is an extension of the 2D Grid layout in which components 

are placed on a grid of cells. Each component takes all available space within its 

cell, and each cell has exactly the same size. If a grid container is resized, all grid 

cells are resized. In a DepthGrid layout container, each cell of the grid can be 

associated to a depth information. Therefore, it is possible to bring some cells inside 

or outside of the screen plane defining their depth information. Figure 46(c) shows 

an example of DepthGrid layout, in which only the fifth cell has a different depth. 

Carousel Layout presents its components in a 3D carousel interface, as shown 

in Figure 46(d). The carousel orientation is specified by the namesake attribute, 

which can receive the vertical or horizontal value. The spacing among the 

carousel’s components is specified by the x-radius and y-radius attributes. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       145 

 

  

Whereas it is possible to use the above layout templates individually, an 

interesting feature is to create complex user interface composing them 

hierarchically. In such case, each layout container must respect not only the 2D-

spatial constraints of their parent, but also the min- and max-depth defined by the 

parent heuristic of the container instance. 

Another interesting possibility is to compose 2D-only layout templates with 

depth-based layouts. For example, it is possible to include a Stack layout container 

as a cell of a 2D-only grid layout. In such case, the 2D-only layout container 

behaves as if min- and max-depth attributes are, respectively, the minimum and 

maximum depth values supported by the multimedia player (e.g., using NCL+depth 

extensions, min- and max-depth will be -1.0 and 1.0, respectively). The following 

source code shows an example of how to specify nested layout templates integrating 

a 2D flow layout and a depth-based Stack layout. 

<lay:layout id="flowLayout" 

            type="flow" 

            width="200px" height="200px" 

            align="center"> 

   

  <lay:item id="flowLayoutItem" .../> 

   

  <lay:layout type="depthFlow"> 

    <lay:item id="flowLayoutItem" .../> 

  </lay:layout> 

</lay:layout> 

 

B.4.1.  
Depth-based Layout Processor 

There are at least two possibilities of using the above depth-based layouts: 

through layout templates natively supported by the multimedia language player; or 

by translating them to low-level depth primitives supported. The implementation 

reported in this appendix follows the second approach. We call layout processor 

the translator. Its prototype has been implemented using the Lua13 scripting 

language, and follows the architecture illustrated in Figure 47. 

 

                                                 
13 http://lua.org 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       146 

 

  

 

Figure 47 Architecture of the depth-based layout processor. 

To be independent from the input and target languages, the layout processor 

core works with virtual components and virtual layout concepts. Only after 

accomplishing its tasks (positioning and sizing the components), it fills the final 

multimedia document. The “Language Importer” and “Language Exporter” 

components are responsible for converting from the input document to the internal 

layout model, and from the internal layout model to the final document syntax 

representation, respectively. As a usage example, a Language Importer and 

Language Exporter have been developed for NCL extended with the low-level 

depth primitives of Chapter 3. 

Since we are aware that the proposed depth-based layout templates are not 

sufficient for all kinds of 2D+depth multimedia applications, extensibility is an 

important requirement for the layout processor prototype. New layout template 

heuristics can be integrated into the processor, by registering a Lua table that 

contains the following fields: 

 the name of the new layout template type (as in type attribute); 

 the attributes (both required and allowed) it supports; and 

 the method that implements the heuristics for that layout template 

type (named solve function, in what follows). 

The solve function is called when solving the layout, hierarchically, and is 

responsible for positioning and resizing the graphical child components in a 

container. The solve function receives as parameters:  

 the virtual layout container that must be solved;  

 its attributes and constraints (width, height, max-depth, min-depth, etc.); 

and  

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       147 

 

  

 the virtual components that are inside the container, and must be 

positioned and sized. 

The API used to extend the layout processor is completely based on virtual 

components. By using virtual components, a layout template author does not need 

to be aware of the input or output multimedia language used to define the graphical 

elements, and is not committed either to input or to output languages. 

 

B.5.  
Conclusion 

This appendix proposed the use of depth-based layout templates for authoring 

multimedia applications targeting 3D displays. As high-level abstractions, they are 

easy to use and configure. Some basic depth-based layout templates (Stack, 

DepthFlow, DepthGrid, and Carousel) and an XML-notation to describe and 

configure them are defined. However, the concept is not restricted to the layout 

language used in the appendix and can be applied to other languages, such as CSS. 

Most of current GUI toolkits provide basic layout managers for organizing 

graphical components in a 2D-only space, following a pre-defined layout template, 

such as box (horizontal or vertical), flow, and grid layouts. Box layouts put their 

components into a single line (horizontal) or column (vertical). Flow layouts put 

their components into a single line, starting a new one if the width of the container 

is not enough to contain a new object. Grid layouts display components on a grid 

with a predefined number of columns and lines. Spacing between the objects can 

also be controlled through parameters. Since most of these layout managers are in 

the scope of general purpose programming languages, they can be extended, 

through a well-defined API. Graphic designers are also able to create complex GUIs 

by adding components that follow layout templates to containers, which also follow 

layout templates, thus creating a hierarchy of layout templates. 

The appendix also presents an architecture and implementation for an 

extensible layout processor. The implementation has been thought so that new 

layout heuristics can be easily integrated. The layout processor is able to receive 

depth-based layout template specifications together with an input multimedia 

document, and to produce the final multimedia document targeting 3D displays. As 

a usage example, the high-level layout facilities have been integrated into the NCL 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       148 

 

  

language. The NCL application resulted from the layout processor is able to run in 

an NCL player implementation that supports depth extensions (AZEVEDO; 

SOARES, 2013). Figure 44 shows an NCL application rendered on a 3D display, 

in which all aforementioned processes were performed. 

So far, we have discussed depth-based layout templates in the scope of 

multimedia languages. However, an interesting use is to integrate them with 

document template languages, such as XTemplate (DOS SANTOS; 

MUCHALUAT-SAADE, 2012) and TAL (SOARES NETO, 

CARLOSDESALLES; SOARES; DE SOUZA, 2012). These languages allow for 

defining reusable temporal (and interactive) behavior in multimedia applications. 

The layout processor proposed in this appendix allows for implementing such 

integration in a two-step processing workflow (as illustrated in Figure 48). Such 

approach does not require any modification in either the layout template or 

document template processors. In the first step, the template processor receives the 

document template specification and a filling document (e.g., defining the media 

objects that will be part of the final document). It then creates an intermediate 

document filling the document template’s hot spots. In the second step, the layout 

processor receives the intermediate document and creates the final document, in 

which each media object has the positioning, size and depth specification in 

agreement with the layout template. In this two-step approach, the layout processor 

becomes independent of the document template authoring language in use. 

 

  

Figure 48 Two-step template processing. 

The set of depth-based layouts proposed in this appendix is probably far from 

complete. As aforementioned, we are in the first steps towards a library of layout 

templates. Thus, an important future work is to continue searching for new 

appealing depth-based layout templates. In particular, we are looking for extending 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA



       149 

 

  

our approach, which currently handles per-component depth, to allow per-pixel 

depth information; i.e., to allow for the same media component having more than 

one depth information.. 

Evaluating the usability of the layout template examples was not among the 

goals of this appendix. Although they have been well-received by multimedia 

authors in our initial experiments, future work includes a qualitative research and 

comparison between depth-based layout templates and 2D-only layout templates, 

with end users using 3D displays. 

DBD
PUC-Rio - Certificação Digital Nº 1021805/CA




